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Abstract

We introduce two models of consensus following a majority rule on time-evolving stochastic
block models (SBM), in which the network evolution is Markovian or non-Markovian. Under the
majority rule, in each round, each agent simultaneously updates their opinion according to the
majority of their neighbors. Our network has a community structure and randomly evolves with
time. In contrast to the classic setting, the dynamics is not purely deterministic, and reflects
the structure of SBM by resampling the connections at each step, making agents with the same
opinion more likely to connect than those with different opinions.

In the Markovian model, connections between agents are resampled at each step according
to the SBM law and each agent updates their opinion via the majority rule. We prove a power-
of-one type result, i.e., any initial bias leads to a non-trivial advantage of winning in the end,
uniformly in the size of the network.

In the non-Markovian model, a connection between two agents is resampled according to the
SBM law only when some of the two changes opinion and is otherwise kept the same. We study
the phase transition between the fast convergence to the consensus and a halt of the dynamics.
Moreover, we establish thresholds of the initial lead for various convergence speeds.

1 Introduction

In the theory of social learning, consensus refers to the following problem: given a collection of
agents holding different opinions, the agents interact and update their opinions under certain rules
with the goal of reaching unanimity. One of the most classic and straightforward rules for updating
opinions is the majority dynamics, where in each round, all agents simultaneously update their
opinions based on the majority of their neighbors. Typically, the connections between agents
are modeled mathematically using graphs/networks, where vertices represent agents and edges
represent connections. Majority dynamics has a long history and allows numerous applications,
including economics [EF93, BG98], psychology [CH56], biophysics [MP43], and social choice theory
[Gra78, NXX+20]. See also [MT17] for a more recent and detailed account.

Recently there has been surging interest in majority dynamics on random networks. Among
various models of majority dynamics, two classes of formulations are particularly popular and
technically tractable. We briefly describe their settings as follows.

(a) Majority dynamics on a static random graph. Consider the Erdős-Rényi graph G(n, p) repre-
senting the connections of the agents, which is fixed throughout the dynamics. Typically the
initial opinions held by the agents are assumed to be biased (meaning that one opinion is held
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by more people than any of the others), either in a deterministic way [TV20, SS22, BD22] or
randomly [BCO+16, FKM20, Zeh20, CKLT21]. In the dense regime, the recent breakthrough
of [SS22] proved a power-of-one result, namely any initial bias leads to a nontrivial advantage
of winning in the end, uniformly in the size of the network. In the sparser case, [CKLT21]
confirms the same result with random initial opinions. For other random graph models, see
e.g., [GZ18] for random regular graphs and [Sha21] for inhomogeneous random graphs.

(b) k-majority dynamics. Consider a (possibly random) graph G and a fixed integer k. In each
round, each agent randomly samples k connections from its neighbors in G, with an initial bias
on the opinions. In the literature, G may refer to the complete graph [DGM+11, BCN+16,
GL18, MMR20], expander graphs (as well as Erdős-Rényi graphs) [CER14, CER+15, CRRS16],
and the stochastic block models [CNS19, SS21]. In this context, it was shown that any initial
bias leads to a consensus.

A common feature of these models is the symmetry of connections between agents with or
without the same opinion. For example, in majority dynamics on G(n, p), both of the two types of
connections are sampled with probability p. Nevertheless, there is no reason a priori that an agent
draws connections equally likely with those holding the same opinion and those with a different
opinion. In this paper, we build majority dynamics models beyond the symmetric setting.

To highlight the community structures of those with the same opinion, we introduce two pa-
rameters p, q ∈ [0, 1] to represent the connecting probabilities, where p is the probability that two
agents with the same opinion are connected, and q is the probability that two agents with different
opinions are connected. Motivated by real-world scenarios, we will assume p > q. This structure is
captured by the stochastic block model (SBM). Introduced by [HLL83], SBM is a typical model of
inhomogeneous random graphs; see [BJR07]. The simplest case of an SBM considers a bipartition
of the vertices into two blocks, where edges within a certain block are independently sampled with
probability p and otherwise with probability q. For more detailed applications in machine learning
and computer science, see [Abb17].

We remark that although there is literature concerning k-majority dynamics on SBM, these
works do not reflect the correspondence between the blocks and different opinions. The SBM
appears there only as a generic prototype of the underlying graph of interest.

1.1 Models

To be more precise, our models can be mathematically formulated as follows. Throughout this
paper, for simplicity, we consider two opinions at presence, denoted by + and −. Without loss of
generality, we assume an initial bias with n + ∆ opinions + and n opinions −, where ∆ = ∆(n)
is a positive integer that may depend on n. We are interested in the asymptotic behavior of the
model as n → ∞.

Definition 1 (Majority dynamics). Given a graph G = (V,E) whose vertices are indexed by [n] :=

{1, . . . , n}, each vertex is associated with an initial binary opinion labeled by Wi = W
(0)
i ∈ {±1}.

Consider a bipartition V = V
(0)
+ ∪ V

(0)
− , where V

(0)
+ = {i ∈ [n] : W

(0)
i = 1} and V

(0)
− = {i ∈ [n] :

W
(0)
i = −1}. The majority dynamics on G refers to the following process: At every time step, each

vertex updates its opinion based on the majority of its neighbors, i.e.,

W
(t+1)
i =


sign

 ∑
(i,j)∈E

W
(t)
j

 , if
∑

(i,j)∈E

W
(t)
j ̸= 0;

W
(t)
i , otherwise.

(1)
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Let
V

(t)
+ :=

{
i ∈ [n] : W

(t)
i = +1

}
, and V

(t)
− :=

{
i ∈ [n] : W

(t)
i = −1

}
.

We say the opinion + or − wins at day t if |V (t)
+ | = n or |V (t)

− | = n, respectively.

Definition 2 (Stochastic block models). For positive integers m,n > 0 and p, q ∈ [0, 1], the
stochastic block model G ∼ SBM(m,n, p, q) is constructed as follows. The graph G has m + n
vertices, labeled by the elements of [m+ n]. Each vertex i ∈ [m+ n] has a community label Wi ∈
{−1,+1}. The two communities V+ := {i ∈ [m+n] : Wi = +1} and V− := {i ∈ [m+n] : Wi = −1}
satisfy |V+| = m and |V−| = n. For distinct i, j ∈ [m+ n], if WiWj = 1, then the edge (i, j) is in G
with probability p; otherwise the edge (i, j) is in G with probability q.

In classic literature on majority dynamics, the underlying graph is fixed throughout the process,
and in our framework, such static models do not reflect the evolution of block structures. For
example, if an agent changes their opinion from − to +, the marginal distribution of the influence
from their neighbors (i.e., edge connections) does not change, which was sampled as if he/she had
opinion −. Therefore, to maintain the community structure, our graph needs to evolve in time to
be consistent with the updates of the opinions. The most natural idea is to resample the edges at
each round. Depending on to which extent the edges are resampled, we introduce the following two
models.

Definition 3. For a graph G = (V,E) whose vertices are labeled by [n] with the binary opinions
Wi ∈ {±1}, let W := (W1, . . . ,Wn) denote the sequence of opinions of each vertex. Given an
initialization with n + ∆ vertices with opinion + and n vertices with opinion − on the graph
SBM(n +∆, n, p, q), consider the following coupled dynamics (Gt,Wt) of the vertex opinions and
the graph:

(i) (Markovian model). For each day t ∈ N, after the opinions Wt are determined based on
(Gt−1,Wt−1), we update the graph Gt = (V,Et) by resampling the edges between all pairs

(i, j) based on the law of SBM(|V (t)
+ |, |V (t)

− |, p, q). The opinions Wt+1 are computed via the
majority rule (1) on the updated graph (Gt,Wt).

(ii) (Non-Markovian model). For each day t ∈ N, after the opinions Wt are determined based on
(Gt−1,Wt−1), we update the graph Gt = (V,Et) in the following way. For any pair (i, j), if

W
(t)
i = W

(t−1)
i and W

(t)
j = W

(t−1)
j , then keep the connectivity condition between these nodes,

i.e.,
1{(i,j)∈Et} = 1{(i,j)∈Et−1}.

Otherwise, we resample the pair (i, j) based on their updated opinions using the law of

SBM(|V (t)
+ |, |V (t)

− |, p, q), i.e.,

P [(i, j) ∈ Et] =

{
p, if W

(t)
i W

(t)
j = 1;

q, otherwise.

The opinions Wt+1 are computed via the majority rule (1) on the updated graph (Gt,Wt).

Figure 1: The Markovian model: all old connec-
tions are resampled

Figure 2: The non-Markovian model: only the
dashed old connections are resampled
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Remark 1. In both models, our graph Gt = (V,Et) is a dynamic graph, a graph whose topology
evolves with time, in the sense of [CDIG+15]. Dynamic stochastic block models were previously
considered in the context of community detection by [CDIG+15]. More generally, Markovian net-
works have been investigated so far in the context of information spreading [BCP+11] and random
walk [CSZ20], etc.

Remark 2. For the Markovian model, it is easy to see that the underlying graph is always
marginally a stochastic block model, with two blocks given by agents holding the two different
opinions. Nevertheless, the marginal distribution of the non-Markovian model is in general not
simply a stochastic block model due to the dependency of the connections on the prior information
of neighbor’s opinions, making it more intractable to analyze.

By definition, the evolution of the Markovian model on different days are independent, and hence

the number of vertices with opinion +, |V (t)
+ |, t ∈ N0, forms a Markov chain on {0, . . . , 2n + ∆}

with absorbing states {0, 2n+∆}. This explains the names of our models.
One motivation for our models is from Social choice theory. In the context of social choice, we

may think of our models as an election between two parties. Members of the same party are more
united and less likely to be influenced by their opponents. In the non-Markovian model, once a
pair of agents interact with each other, their social connection will not break unless one or both
sides of the agents change their opinions. Meanwhile, if an agent changes their opinion, their social
connections will be rebuilt based on the updated opinion and the current profiles of the two parties.
The Markovian model, in contrast, can be regarded as the other extreme case, in which all agents
interact with each other randomly at each round. It would be an interesting open question to study
an model where the randomness of the resampling is intermediate.

1.2 Main Results

Let G = (V,E) ∼ SBM(n + ∆, n, p, q). Since the cases p = 0 or q = 0 are trivial, we will always
assume p, q > 0. Indeed, if p = 0, the graph G is bipartite and consequently every agent in the
network will alternate their opinion in each step. If q = 0, then G is disconnected and separated
by the two disjoint communities, meaning that there will not be opinion changes. Throughout the
paper, for simplicity we fix two constants (p, q) independent of n with 0 < q < p ⩽ 1, but the initial
bias ∆ = ∆(n) ∈ N may depend on n. We remark that our techniques generalize easily to the case
(log n)−c ⩽ p, q ⩽ 1− (log n)−c with p/q ⩾ 1 + δ for some absolute constant c > 0 and any δ > 0,
as well as the corresponding cases with q > p. We now define some events that are of interest.

Definition 4 (Outcomes of the dynamics). For the coupled majority dynamics (Gt,Wt) defined
in Definition 3, consider the following events.

(i) The opinion + wins at day t,

Pt :=
{
|V (t)

+ | = 2n+∆
}
, t ∈ N.

(ii) The opinion + wins eventually,

P :=
{
lim
t→∞

|V (t)
+ | = 2n+∆

}
=
⋃
t∈N

Pt.

(iii) The opinion − wins at day t,

Mt :=
{
|V (t)

− | = 2n+∆
}
, t ∈ N.
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(iv) The opinion − wins eventually,

M :=
{
lim
t→∞

|V (t)
− | = 2n+∆

}
=
⋃
t∈N

Mt.

(v) The dynamics halts (before reaching consensus),

T := (P ∪ M )c .

Remark 3. Let us give some heuristics before presenting the main results. In the majority dy-
namics on SBM, the agents are more stubborn to be influenced by others with a different opinion

than in the Erdős-Rényi model. Suppose that we start from |V (0)
+ | = n+∆ and |V (0)

− | = n, and we
wish that the opinion + wins eventually. Any agent with opinion − will receive Bin(n+∆, q) many
opinions + and Bin(n − 1, p) many opinions −. After taking expectation, this yields the natural
guess that when (n+∆)q ⩾ (n− 1)p or (asymptotically) equivalently ∆ > (p− q)n/q, the opinion
+ will win, which is not difficult to confirm. On the other hand, having ∆ ⩾ 1 already breaks the
symmetry between different opinions. So we expect for both models that the opinion + dominates
at some threshold between ∆ = 1 and ∆ = (p− q)n/q, depending on the dependency of memories
in the graph evolution.

Our first result shows that the Markovian model exhibits the power-of-one behavior. We denote
by L = L(p, q) > 0 a large and explicitly computable constant depending only on p, q that may not
be the same on each occurrence.

Theorem 1. Consider the Markovian model on SBM(n+∆, n, p, q), where 0 ⩽ q < p ⩽ 1.

(i) Uniformly for ∆ > 0 and n ∈ N, there exists L(p, q) > 0 such that

P[P] ⩾
1

2
+

1

L
,

i.e., the opinion + wins eventually with probability at least 1
2 + 1

L .

(ii) If ∆(n) → ∞, then P[P] → 1, i.e., the opinion + wins asymptotically almost surely.

Remark 4. Let us note that for the Markovian model, the random walk evolves very slowly
and the time till consensus will be exponentially increasing in n for small ∆ (e.g., for ∆ with
(p − q)n/q − ∆ = Ω(n), as can be seen from the proof of Theorem 1), and thus is not of great
interest to us.

Compared to the Markovian model, the non-Markovian model exhibits a completely different
behavior. Although possessing a similar form as the majority dynamics on Erdős-Rényi graphs
studied in [TV20, BD22, SS22], the picture is still quite different.

(i) The block structure with p > q makes the connection densities distinct between and within
each block, and thus we are comparing binomial distributions with different means (see Re-
mark 3), and the order of such differences needs to be controlled.

(ii) The dynamics halts for a large range of ∆, due to the constraint p > q. For example, if at
one round nobody changes opinion, the dynamics halts.
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(iii) For ∆ ⩾ 0, with high probability there will not be any opinion change from + to − due to
the significant difference of the binomial means (see Proposition 4.1 below), which is not the
case when p = q.

Our main result can be stated as follows.

Theorem 2. Consider the non-Markovian model on SBM(n+∆, n, p, q) where 0 < q < p < 1, and
the constant

H = H(p, q) =

√
p(2− p− q)

q
.

(i) If {dn} is any sequence with dn → +∞ and

∆(n) ⩽

(
p− q

q

)
n−H

(√
3

2
n log n+

√
25n(log log n)2

24 log n
+

√
ndn
log n

)
, (2)

then P[T ] → 1, i.e., the dynamics halts asymptotically almost surely.

(ii) For any sufficiently large constant L(p, q) > 0, if

∆(n) ⩾

(
p− q

q

)
n+ L

√
n log n,

then P[P1] → 1, i.e., the opinion + wins on the first day asymptotically almost surely.

(iii) For any fixed constant δ > 0, if

∆(n) ⩾

(
p− q

q

)
n− (H − δ)

√
n log n,

then P[P2] → 1, i.e., the opinion + wins on the second day asymptotically almost surely.

(iv) For any sufficiently large constant L(p, q) > 0, if

∆(n) ⩾

(
p− q

q

)
n−H

(√
n log n− 3

2

√
n(log log n)2

log n
−

√
Ln

log n

)
, (3)

then P[P3] → 1, i.e., the opinion + wins on the third day asymptotically almost surely.

(v) Asymptotically almost surely, the opinion − will not win, i.e., P[M ] = o(1).

We remark that the rates at which the probabilities converge to 1 can be analyzed explicitly
in the proofs. Observe that there is a transition between the phases P[T ] → 1 and P[P] → 1.
The leading term (p− q)n/q for ∆ where the phase transition takes place is given heuristically by
Remark 3. We conjecture below that the subleading term is −H

√
n log n.

Conjecture 1. For any sufficiently large constant L(p, q) > 0, if

∆ ⩽

(
p− q

q

)
n−H

√
n log n− L

√
n(log log n)2

log n
,

then P[T ] → 1, i.e., the majority dynamics halts asymptotically almost surely.
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In other words, at the critical point ∆c =
(
p−q
q

)
n − H

√
n log n within a window of size

O(
√
n(log log n)2/ log n), there is a sharp phase transition for the outcome of the dynamics. On

one side, the dynamics halts asymptotically almost surely. On the other side, we have a fast
convergence to unanimity within three days. The difficulty here is to analyze the behavior of
the dynamics for multiple days (since the first few days do not give sufficient information on
whether the dynamics will halt), especially when the underlying graph evolves with time. Mean-
while, in the literature of non-Markovian models, the analysis of two days would typically suffice
[BCO+16, FKM20, Zeh20, SS22, BD22].

The precise form of conjecture 1 is motivated by the simpler case p = 1 below. We have focused
on the case p < 1 in the non-Markovian model by now. Nevertheless, when p = 1, agents with the
same opinion will always be connected, and the independence structure is more tractable. In this
special case, we confirm Conjecture 1, establishing the sharp phase transition.

Theorem 3. Consider the non-Markovian model on SBM(n+∆, n, 1, q), where 0 < q < 1.

(i) For any sufficiently large constant L(p, q) > 0, if

∆(n) ⩽

(
1− q

q

)
n−

√
1− q

q

√
n log n− L

√
n(log log n)2

log n
, (4)

then P[T ] → 1, i.e., the dynamics halts asymptotically almost surely.

(ii) For any fixed constant δ > 0, if

∆(n) ⩾

(
1− q

q

)
n−

(√
1− q

q
− δ

)√
n log n,

then P[P2] → 1, i.e., the opinion + wins on the second day asymptotically almost surely.

(iii) For any sufficiently large constant L(p, q) > 0, if

∆(n) ⩾

(
1− q

q

)
n−

√
1− q

q

(√
n log n−

√
n(log log n)2

log n
−

√
Ln

log n

)
,

then P[P3] → 1, i.e., the opinion + wins on the third day asymptotically almost surely.

Remark 5. Among the literature on majority dynamics, the assignment of initial opinions can
be either deterministic or random. Models involving random initial data have been studied in

[BCO+16, FKM20], among many others. More precisely, the set V
(0)
+ (and hence V

(0)
− ) is now

determined by a sequence of i.i.d. random variables independent of everything else, where each
vertex has probability r ∈ (0, 1) holding opinion + and 1− r holding opinion −. In the framework
of the Markovian model, if r > 1/2 then P holds asymptotically almost surely (in short, a.a.s.);
if r < 1/2 then M holds a.a.s.; if r = 1/2 then both P and M hold with probability tending to
1/2. For the non-Markovian model, as a consequence of Theorem 2 and the central limit theorem,
if r ⩾ p/(p+ q) then P2 holds a.a.s.; if r ⩽ q/(p+ q) then M2 happens a.a.s.; otherwise, T holds
a.a.s. This completely characterizes the behavior of our models under random initial conditions.
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1.3 Notations and organization of the paper

For n ∈ N, let [n] denote the set of integers {1, . . . , n}. We use small boldface letters to denote
sequences. For a vector or a sequence a = (a1, . . . , an), we use |a| =

∑n
i=1 |ai| to denote the ℓ1

norm. The j-th component of a is also denoted by a(j).
For m,n ∈ N and p ∈ [0, 1], let G(n, p) denote the Erdős-Rényi graph and let G(m,n, p) denote

a random bipartite graph with m vertices on side and n vertices on the other, each edge included
independently with probability p.

For µ, σ ∈ R, let N (µ, σ2) be the normal distribution with mean µ and variance σ2. For n ∈ N
and p ∈ [0, 1], we use Bin(n, p) to denote the binomial distribution with parameters n and p.
When a binomial distribution appears inside a probability operator P, it should be interpreted as
a binomial random variable with such a distribution independent of everything else, unless, when
a certain distribution appears multiple times, they are interpreted as being equal instead of being
independent.

The rest of the paper is organized as follows. In Sectio 2, we briefly describe the proof strategies
which will be different for the two distinct models. In Section 3, we collect some auxiliary results,
which include a summary of graph enumeration results of random graphs in Section 3.1 and nearly-
optimal binomial tail bounds in Section 3.2. The complete proofs of the theorems are given in
Section 4. Finally, we provide some numerical simulations in Section 5 and discuss some open
questions in Section 6.

2 Proof Strategies

2.1 Markovian model

In the Markovian model, thanks to the resampling of the whole graph, at each step the evolution of
the model can be treated as the first round with initialization given by the updated opinions from

the previous step. This implies that the number of vertices holding opinion +, {|V (t)
+ |}t∈N0 , forms

a Markovian random walk on [0, 2n+∆] ∩ Z. This reduces Theorem 1 to the analysis of a certain
random walk on Z. Such a random walk is symmetric around n + ∆/2. Intuitively speaking,
the walk is attracted by its two endpoints 0 and 2n + ∆. Thus to determine P[P] we need to
understand the behavior of the walk near the center n+∆/2. A crucial estimate, given by Lemma
4.1, states that near the center of the chain, the random walk rarely performs a move of length
greater than one, and that the ratio of probabilities of moving right by one to that of moving left by
one is controlled from below by some constant 1 + 1/L, uniformly in n and ∆. Roughly speaking,
this stems from the fact that the binomial tails are exponentially decreasing away from the mean.
Theorem 1 then follows from Gambler’s Ruin estimates, together with the observation that being
close to an endpoint ensures the chain to reach the endpoint with high probability, which is given
by Proposition 4.4.

2.2 Non-Markovian model

For the non-Markovian model, due to the dependency on the memory of previous steps, we need to
track the evolution of graphs more carefully. The first step is to understand the joint distribution
of the degrees of the vertices on the initial day. The marginal distribution of the degree of a fixed
vertex is binomial, whereas the degrees are not independent for different neighbors. We bypass this
difficulty by replacing the degrees with a simpler probabilistic model, in which the degrees of the
vertices form a sequence of independent binomial random variables. This idea is based on graph
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enumeration results of random graphs by McKay and Wormald [MW97], which roughly states that
the distributions of the degrees in a random graph are approximately conditionally independent.
We address the reduction to the independent degree model in Section 3.1.

We want to emphasize that although the previous work [SS22] also uses grpah enumeration
techniques, our method is very different. In our work, graph enumerations are only used in the
analysis for the initial day. Moreover, graph enumerations cannot be applied for the follow-up days
in the process. This is because the dependency of past memories makes the edge connections highly
correlated. The edge connections are hard to track along the process, and thus it is impossible to
apply similar analysis for steps after day 1 as in the static Erdős-Rényi model.

We have mentioned that one feature of the non-Markovian model is that if at one step nobody
changes opinion, then the model becomes stationary and nobody changes opinion anymore. Thus,
a lower bound of P[T ] is given by the probability that the model halts at the first few steps. This
establishes part (i) in Theorem 2, and similarly in the simpler case of Theorem 3 (i).

The route to proving (ii) to (v) of Theorem 2 is taken differently from the literature due to the
intrinsic difference of our models. Since (ii) and (iii) are similar but simpler, we explain below the
proof of part (iv). Part (v) will be a simple consequence of Proposition 4.1, which states that there
are no vertices changing opinion from + to − a.a.s. Similar arguments also apply to Theorem 3
(ii) and (iii).

In short, the condition in Theorem 2 (iv) guarantees with high probability an increment on

|V (t)
+ | of L

√
n log n in the first day, δn1/2+δ in the second, and making opinion + winning in the

third. The increment on the first day is purely marginal depending only on the SBM graph, which
may be bounded explicitly using the conditioning structure of the number of neighbors after the

reduction to the independent degree model. Given the increase on the first day, for a vertex v ∈ V
(1)
−

it receives new + neighbors from the L
√
n log n ones, giving roughly qL

√
n log n connections. Thus,

for those v which has − connections not exceeding + connections by qL
√
n log n, it will turn +,

i.e., v ∈ V
(2)
+ . This yields a good number of δn1/2+δ. On the third day we apply the same logic,

and conclude via union bound that those v ∈ V
(2)
− with the number of − neighbors exceeding + by

qδn1/2+δ are very few. Although this analysis generalizes to multiple days, it will only affect the
lower order terms, and thus will not be considered in this paper.

3 Preliminaries

3.1 Reduction to the independent model

The swapping of opinions in the majority dynamics is based on the degrees of the vertices in the
stochastic block model, but the distribution of the true degrees of an SBM is hard to analyze
due to the constraint from the graph structure. To overcome this issue, as mentioned in the
outline of proofs, we rely on the graph enumeration technique developed by Mckay and Wormald
[MW90, MW97]. At a high level, their work implies that the degrees of random graphs look
conditionally independent. These techniques apply to the non-Markovian model in the proofs of
Theorems 2 and 3.

To make our paper self-contained, in this section we review some probabilistic models for the
degree sequences, which will be used to give a quantitative version of the aforementioned high-level
idea of graph enumerations. To begin with, let us define the domains where the degree sequences
are defined, following [MW97].

Definition 5 (Degree sequence domains). Denote In = {0, . . . , n − 1}n. Let En be the even sum
sequences in In. The elements of these sets are typically denoted by the small bold letter d. For
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the bipartite setting, similarly denote Im,n = {0, . . . , n}m×{0, . . . ,m}n. Let Em,n be the sequences
with equal sums on both sides. The elements of these sets are typically denoted by small boldface
letters s of length m and t of length n. The corresponding random variables will be denoted by
capital boldface letters.

The distribution of the true degree sequence in G(n, p) and G(m,n, p) is denoted as follows.

Definition 6 (True degree models). Let Dn
p be the degree sequence distribution of the Erdős-Rényi

graph G(n, p), which is a random variable supported on En ⊂ In. For the bipartite setting, let Dm,n
p

be the degree sequence distribution of the random bipartite graph G(m,n, p), which is a random
variable supported on Em,n ⊂ Im,n.

For approximations of the true degree model, we introduce the following models.

Definition 7 (Independent degree models). Let Bn
p be the distribution of n independent copies of

Bin(n− 1, p) random variables, which is supported on In. For the bipartite setting, let Bm,n
p be the

distribution of m independent Bin(n, p) variables and n independent Bin(m, p) variables, which is
supported on Im,n.

Definition 8 (Conditioned degree models). Let En
p be the distribution of Bn

p conditioned on having
even sum, which is supported on En.

Definition 9 (Integrated degree models). Let In
p be the distribution defined as follows: First

sample p′ ∼ N (p, p(1−p)
n(n−1)), conditional on p′ ∈ (0, 1); then sample from En

p′ .

Using the models introduced above, we now state the following necessary preliminary result.

Theorem 4 ([MW90, Theorem 3] and [MW97, Theorem 3.6]). There exists c > 0 so that the
following is true. Let n ⩾ 2 and suppose that (log n)−1/4 ⩽ p ⩽ 1− (log n)−1/4. There is an event
Bn

p ⊂ In such that PDn
p
[Bn

p ] = n−ω(1) and uniformly for all d ∈ In\Bn
p we have

PDn
p
[D = d] =

(
1 +O(n−c)

)
PIn

p
[D = d] .

In the remainder of this paper, when dealing with probabilities concerning random graphs, the
notation P (without mentioning the probability model explicitly) represents the probability measure
of the true degree models. For example, the conclusion of Theorem 4 can be written as

P [D = d] =
(
1 +O(n−c)

)
PIn

p
[D = d] .

Note that the degree sequence in SBM(m,n, p, q) is sampled from three independent subgraphs:
G(m, p), G(n, p) and G(m,n, q). Using Theorem 4, when considering the marginal probabilities on
a single block, we can replace the true degrees of the Erdős-Rényi subgraph with the integrated
degree model, and henceforth reduce it to the independent degree model. Specifically, we have the
following result.

Lemma 3.1. For any sufficiently large fixed L > 0, we have

PDn+∆
p ,Bn+∆,n

q

[
|V (0)

+ ∩ V
(1)
+ | = x

]
=
(
1 +O(n−c)

) ∫
R
PBn+∆

r1
,Bn+∆,n

q

[
|V (0)

+ ∩ V
(1)
+ | = x

]
dµ1(r1) +O(n−ω(1)),
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and

PDn
p ,B

n+∆,n
q

[
|V (0)

− ∩ V
(1)
− | = y

]
=
(
1 +O(n−c)

) ∫
R
PBn

r2
,Bn+∆,n

q

[
|V (0)

− ∩ V
(1)
− | = y

]
dµ2(r2) +O(n−ω(1)).

where the measure µ1 is the distribution N
(
p, p(1−p)

(n+∆)(n+∆−1)

)
, µ2 is the distribution N

(
p, p(1−p)

n(n−1)

)
,

and the integral domain is given by

R :=

{
r ∈ [0, 1] : |r − p| ⩽ L log n

n

}
. (5)

Proof. For a given graph, the swapping of opinions purely depends on the degree information. This
implies that the sizes of the swapped vertices, as random variables, are measurable with respect to
the degree sequences. Note that the degree sequences are sampled from three independent random
graphs: two Erdős-Rényi graphs G(n+∆, p), G(n, p), and a random bipartite graph G(n+∆, n, q),
i.e., the randomness of this event comes from the true degree models Dn+∆

p , Dn
p and Dn+∆,n

q

independently. Since we are interested in the marginal behavior of a single block, by Theorem 4,
we can replace the true degree models Dn+∆

p and Dn
p with the integrated degree models In+∆

p and

In
p up to a 1 +O(n−c) multiplicative factor and an additive error term of size O(n−ω(1)).

For the two Erdős-Rényi subgraphs, let d1 ∈ In+∆ be the degree sequence of length n+∆ and
d2 ∈ In be the degree sequence of length n. For the bipartite subgraph, we use (s, t) ∈ In+∆,n to

denote the degree sequences of length n +∆ and n, respectively. We treat the swapped sets V
(1)
+

and V
(1)
− as functions of (d1,d2, (s, t)), and extend these functions in the obvious way if the total

sum in In+∆ or In is not even, or the sums on both sides of In+∆,n do not match.
Using these notations, by Theorem 4, we have

PDn+∆
p ,Bn+∆,n

q

[
|V (0)

+ ∩ V
(1)
+ | = x

]
=
(
1 +O(n−c)

)
PIn+∆

p ,Bn+∆,n
q

[
|V (0)

+ ∩ V
(1)
+ | = x

]
+O(n−ω(1)). (6)

and

PDn
p ,B

n+∆,n
q

[
|V (0)

− ∩ V
(1)
− | = y

]
=
(
1 +O(n−c)

)
PIn

p ,B
n+∆,n
q

[
|V (0)

− ∩ V
(1)
− | = y

]
+O(n−ω(1)). (7)

By the definition of integrated degree models, we further have

PIn+∆
p ,Bn+∆,n

q

[
|V (0)

+ ∩ V
(1)
+ | = x

]
=

1∫
[0,1] dµ1(r1)

∫
[0,1]

PEn+∆
r1

,Bn+∆,n
q

[
|V (0)

+ ∩ V
(1)
+ | = x

]
dµ1(r1),

and

PIn
p ,B

n+∆,n
q

[
|V (0)

− ∩ V
(1)
− | = y

]
=

1∫
[0,1] dµ2(r2)

∫
[0,1]

PEn
r2

,Bn+∆,n
q

[
|V (0)

− ∩ V
(1)
− | = y

]
dµ2(r2).

Consider the random variables

Z1 ∼ N
(
p,

p(1− p)

(n+∆)(n+∆− 1)

)
, Z2 ∼ N

(
p,

p(1− p)

n(n− 1)

)
.
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The Gaussian tail bound gives that for i = 1, 2,

P
[
|Zi − p| ⩽ L log n

n

]
= 1−O(n−ω(1)).

This yields

PIn+∆
p ,Bn+∆,n

q

[
|V (0)

+ ∩ V
(1)
+ | = x

]
=

∫
R
PEn+∆

r1
,Bn+∆,n

q

[
|V (0)

+ ∩ V
(1)
+ | = x

]
dµ1(r1) +O(n−ω(1)),

and

PIn
p ,B

n+∆,n
q

[
|V (0)

− ∩ V
(1)
− | = y

]
=

∫
R
PEn

r2
,Bn+∆,n

q

[
|V (0)

− ∩ V
(1)
− | = y

]
dµ2(r2) +O(n−ω(1)),

where R is given by (5).
Finally, we remove the evenness constraints in the conditioned models En+∆

r1 and En
r2 . Note that

the Bayes’ rule implies

PEn+∆
r1

,Bn+∆,n
q

[
|V (0)

+ ∩ V
(1)
+ | = x

]
=

PBn+∆
r1

,Bn+∆,n
q

[
|V (0)

+ ∩ V
(1)
+ | = x, |D+| ∈ 2Z

]
PBn+∆

r1
[|D+| ∈ 2Z]

,

and

PEn
r2

,Bn+∆,n
q

[
|V (0)

− ∩ V
(1)
− | = y

]
=

PBn
r2

,Bn+∆,n
q

[
|V (0)

− ∩ V
(1)
− | = y, |D−| ∈ 2Z

]
PBn

r2
[|D−| ∈ 2Z]

,

where D+ and D− are the degree sequences of V
(0)
+ and V

(0)
− , respectively. Using the arguments in

[SS22, Equation (2.4)], we have

PBn+∆
r1

,Bn+∆,n
q

[
|V (0)

+ ∩ V
(1)
+ | = x, |D+| ∈ 2Z

]
PBn+∆

r1
[|D+| ∈ 2Z]

=
(12 +O(exp(−n)))PBn+∆

r1
,Bn+∆,n

q

[
|V (0)

+ ∩ V
(1)
+ | = x

]
+O (exp(−Ω(n)))

1
2 +O(exp(−n))

= PBn+∆
r1

,Bn+∆,n
q

[
|V (0)

+ ∩ V
(1)
+ | = x

]
+O (exp(−Ω(n))) ,

and similarly

PBn
r2

,Bn+∆,n
q

[
|V (0)

− ∩ V
(1)
− | = y, |D−| ∈ 2Z

]
PBn

r2
[|D−| ∈ 2Z]

= PBn
r2

,Bn+∆,n
q

[
|V (0)

− ∩ V
(1)
− | = y

]
+O (exp(−Ω(n))) .

Plugging back into (6) and (7) completes the proof.

3.2 Tail estimates of binomial distributions

For the proofs of the main theorems, we will frequently use the marginal probabilities that the
opinion of a certain vertex flips at the first step in majority dynamics on SBM(n + ∆, n, p, q),
defined by

p−+ := P [Bin(n+∆, q) > Bin(n− 1, p)] , p+− := P [Bin(n, q) > Bin(n+∆− 1, p)] . (8)
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In this section, we collect some technical results concerning the tail behavior of binomial random
variables and give upper and lower bounds for quantities of the form (8). Throughout we consider
two fixed constants p, q ∈ (0, 1) with p > q, and p̃ ∈ [p − L(log n)/n, p + L(log n)/n]. Define
p̃−+ := P [Bin(n+∆, q) > Bin(n− 1, p̃)] similarly as in (8). Recall Hoeffding’s inequality that for
k ⩽ np̃,

P[Bin(n, p̃) ⩽ k] ⩽ L exp

(
−2n

(
p− k

n

)2
)
. (9)

The following Lemma gives upper and lower bounds for the probability in (9) in the case
np− k = O(

√
n log n). For simplicity of notations, let us define

∆′(n) :=

(
p− q

q

)
n−∆(n)

Lemma 3.2. Assume that ∆′(n) = O(
√
n log n), then there exists M = M(∆′, p, q) > 0 so that

1

M
√
log n

exp

(
−C∆′2(n+∆)

n2

)
⩽ P[Bin(n+∆, q) > np̃] ⩽ M exp

(
−C∆′2(n+∆)

n2

)
, (10)

where C = C(p, q) = q3/(2(1− q)p2).

Proof. Recall from [Ash12, Lemma 4.7.2] the classical tail bounds for binomial distribution (here
p may depend on n):

1

L
√
n
exp

(
−(n+∆)D

(
np

n+∆

∥∥∥∥ q)) ⩽ P[Bin(n+∆, q) = np] ⩽ P[Bin(n+∆, q) ⩾ np]

⩽ L exp

(
−(n+∆)D

(
np

n+∆

∥∥∥∥ q)) , (11)

where the Kullback-Leibler divergence D ( ·∥ ·) is given by

D (a∥ p) := a log

(
a

p

)
+ (1− a) log

(
1− a

1− p

)
.

Here and later, for simplicity we may assume np as well as any other quantities that are ω(1) to
be integers. Applying the floor or ceiling functions will not change the final results.

Using the inequalities x−x2/2 ⩽ log(1+x) ⩽ x−x2/2+Lx3 and −x−x2/2−Lx3 ⩽ log(1−x) ⩽
−x− x2/2 for 0 < x < 1, we compute

D

(
np̃

n+∆

∥∥∥∥ q)

=
np

p
qn−∆′ log

(
np
q

p
qn−∆′

)
+

(
1− np

p
qn−∆′

)
log

1− np
p
q
n−∆′

1− q

+ o

(
1

n

)

⩾
np

p
qn−∆′

(
∆′

p
qn−∆′ −

∆′2

2(pqn−∆′)2

)

+

(
1− np

p
qn−∆′

)(
− q∆′

(1− q)(pqn−∆′)
− (q∆′)2

2(1− q)2(pqn−∆′)2
− L(q∆′)3

(1− q)3(pqn−∆′)3

)
+ o

(
1

n

)
=

(
q3

2(1− q)p2

)
∆′2

n2
+ o

(
1

n

)
,
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where we used in the last step that ∆′(n) = o(n2/3). Similarly,

D

(
np̃

n+∆

∥∥∥∥ q) ⩽
np

p
qn−∆′

(
∆′

p
qn−∆′ −

∆′2

2(pqn−∆′)2
+

L∆′3

(pqn−∆′)3

)

+

(
1− np

p
qn−∆′

)(
− q∆′

(1− q)(pqn−∆′)
− (q∆′)2

2(1− q)2(pqn−∆′)2

)
+ o

(
1

n

)
=

(
q3

2(1− q)p2

)
∆′2

n2
+ o

(
1

n

)
.

Plugging these estimates into (11) gives the desired upper bound

P[Bin(n+∆, q) ⩾ np̃] ⩽ L exp

(
−C∆′2(n+∆)

n2

)
and

P[Bin(n+∆, q) = np̃] ⩾
1

L
√
n
exp

(
−C∆′2(n+∆)

n2

)
. (12)

Let us refine the lower bound (12) to get a lower bound for P[Bin(n+∆, q) ⩾ np̃]. Note that

P
[
Bin(n+∆, q) = np̃+

√
n

logn

]
P[Bin(n+∆, q) = np̃]

=

(
q

1− q

)√
n

logn

( n+∆

np̃+
√

n
logn

)
(
n+∆
np̃

)
⩾

q(n+∆− np̃−
√

n
logn)

(1− q)np̃


√

n
logn

⩾

(
1−M

√
log n

n

)√
n

logn

⩾
1

M
, (13)

where the constant M may not be the same on each occurrence. By unimodality of the probability
mass function of the binomial distribution and (12),

P[Bin(n+∆, q) ⩾ np̃] ⩾ P
[
Bin(n+∆, q) = np̃+

√
n

log n

]√
n

log n

⩾
1

M
√
n
exp

(
−C∆′2(n+∆)

n2

)√
n

log n

⩾
1

M
√
log n

exp

(
−C∆′2(n+∆)

n2

)
.

This completes the proof.

We now apply Lemma 3.2 to obtain estimates on the (fundamentally important) probability
that one binomial random variable is larger than the other.

Lemma 3.3. Assume that ∆′ = O(
√
n log n), then there exists M = M(∆′, p, q) > 0 so that

1

M(log n)
exp

(
−C ′∆′2

n

)
⩽ p̃−+ ⩽ M(log n) exp

(
−C ′∆′2

n

)
,
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where C ′ = C ′(p, q) is given by

C ′(p, q) =
q2

2p(2− p− q)
. (14)

Proof. Denote by K = K(n, p̃, q,∆) ∈ Z ∩ [(n+∆)q, np̃] that solves the minimization problem

min
K∈Z∩[(n+∆)q,np̃]

(
1

2(1− q)

q(n+∆)(K − (n+∆)q)2

K2
+

1

2p̃

(1− p̃)n(n−K − n(1− p̃))2

(n−K)2

)
and C(n, p̃, q,∆) the attained minimum. One checks using ∆′(n) = O(

√
n log n) that

C(n, p̃, q,∆) = min
K∈[(n+∆)q,np]

(
np(K − (n+∆)q)2

2(1− q)(np)2
+

(1− p)n(n−K − n(1− p))2

2p(n(1− p))2

)
+O(1)

= C ′(p, q)
∆′2

n
+O(1)

where C ′(p, q) is given by (14), and this holds uniformly for p̃ ∈ [p − L(log n)/n, p + L(log n)/n].
We have by using independence and (10) that

p̃−+ ⩾ P[Bin(n+∆, q) ⩾ K] P[Bin(n− 1, p̃) ⩽ K]

⩾
1

M log n
exp

(
− 1

2(1− q)

q(n+∆)(K − (n+∆)q)2

K2
− 1

2p̃

(1− p̃)n(n−K − n(1− p̃))2

(n−K)2

)
⩾

1

M log n
exp

(
−C ′∆′2

n

)
.

This gives the lower bound as desired.
For the upper bound, since ∆′ = O(

√
n log n), we may chop the interval [(n + ∆)q, (n − 1)p̃]

into at most M log n pieces of lengths
√
n/ log n. This gives

p̃−+ ⩽
M logn∑
j=1

P
[
Bin(n− 1, p̃) < j

√
n

log n
+ (n+∆)q

]
P
[
Bin(n+∆, q) > (j − 1)

√
n

log n
+ (n+∆)q

]
+ P[Bin(n− 1, p̃) < (n+∆)q] + P[Bin(n+∆, q) > (n− 1)p̃].

By the same arguments as in (13), the first term is bounded by

M logn∑
j=1

P
[
Bin(n− 1, p̃) < j

√
n

log n
+ (n+∆)q

]
P
[
Bin(n+∆, q) > (j − 1)

√
n

log n
+ (n+∆)q

]

⩽ M

M logn∑
j=1

P
[
Bin(n− 1, p̃) < j

√
n

log n
+ (n+∆)q

]
P
[
Bin(n+∆, q) > j

√
n

log n
+ (n+∆)q

]

⩽ M

M logn∑
j=1

exp(−C(n, p̃, q,∆))

⩽ M(log n) exp

(
−C ′∆′2

n

)
,
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where the constant M may not be the same on each occurrence. On the other hand, it is easy to
check using Lemma 3.2 that the rest two terms satisfy

P[Bin(n− 1, p̃) < (n+∆)q] + P[Bin(n+∆, q) > (n− 1)p̃] ⩽ M(log n) exp

(
−C ′∆′2

n

)
.

This finishes the proof of the upper bound.

The following lemmas deal with probabilities that a binomial random variable lies in a (random)
interval, which will be useful for giving sufficient conditions for the dynamics to halt.

Lemma 3.4. Consider a sequence an = o(
√
n/ log n). Suppose that ∆′ ⩾ δ

√
n log n for some

δ > 0. Then there exists M = M(δ, p, q) > 0 such that

an(log n)
1/2

M
√
n

exp

(
−C ′∆′2

n

)
⩽ P[Bin(n+∆, q) ⩽ Bin(n− 1,p̃) ⩽ Bin(n+∆, q) + an]

⩽
Man(log n)

3/2

√
n

exp

(
−C ′∆′2

n

)
.

Proof. Using similar arguments as in Lemma 3.3 in the second line, we have

P[Bin(n+∆, q) ⩽ Bin(n− 1, p̃) ⩽ Bin(n+∆, q) + an]

= (1 + o(1))

(n−1)p̃−
√
n logn/M∑

j=(n+∆)q+
√
n logn/M

P[Bin(n− 1, p̃) = j]P[j − an ⩽ Bin(n+∆, q) ⩽ j]

⩽ Man

√
log n

n

(n−1)p̃−
√
n logn/M∑

j=(n+∆)q+
√
n logn/M

P[Bin(n− 1, p̃) = j]P[Bin(n+∆, q) ⩾ j]

⩽ Man

√
log n

n
p̃−+

⩽
Man(log n)

3/2

√
n

exp

(
−C ′∆′2

n

)
where the last step is a consequence of Lemma 3.3. The lower bound is similar.

Lemma 3.5. Consider sequences an = o(
√
n/ log n), bn = o(

√
n log n), cn = o(

√
n log n). Suppose

that ∆′ ⩾ δ
√
n log n for some constant δ > 0. Then there exists M sufficiently large (depending on

δ the choice of the above sequences but not on n) such that for n large enough,

P[n+ bn − an ⩽ Bin(n+∆+ cn, q) ⩽ n+ bn] ⩽
an(log n)

M

√
n

exp

(
−C ′∆′2

n

)
.

Proof. This follows from similar arguments as in the proof of Lemma 3.4, using Lemma 3.2 instead
of Lemma 3.3. The multiplicative constant M in Lemma 3.4 disappears by choosing here M large
enough.
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4 Proofs of the main results

4.1 Sufficient conditions for consensus

For the non-Markovian model, as mentioned previously, the condition p > q ensures that there
would be no change of opinion from + to − with high probability if we start with an advantage

of the opinion +. To illustrate this fact, for t ∈ N, we define Nt := {V (t)
− ∩ V

(t−1)
+ ̸= ∅}, the event

that there exists an opinion change from + to − at time t. Let also N := ∪t∈NNt.

Proposition 4.1. Consider the non-Markovian model on SBM(n+∆, n, p, q) where 0 < q < p ⩽ 1
and ∆ ⩾ 0. It holds that P[N ] → 0.

Proof. It is straightforward to show using union bound and (9) that

P[N1] ⩽ np+− ⩽ nP [Bin(n, q) > Bin(n− 1, p)] ⩽ L exp(−n/L).

More generally, on the event (∪t−1
s=1Ns)

c we have that |V (t−1)
− | ⩽ n, so that

P

[
Nt

∣∣∣(t−1⋃
s=1

Ns

)c]
⩽ nP [Bin(n, q) > Bin(n, p)] ⩽ L exp(−n/L).

Note also that

P

[⋃
t>n

Nt

∣∣∣( n⋃
s=1

Ns

)c]
= 0,

because if there is no opinion change from + to − in the first n steps, then it must be that the
dynamics halts or the opinion + wins. Combining the above yields that P[N ] ⩽ L exp(−n/L).

We first analyze some simple sufficient conditions for the dynamics to win in the next day.

Proposition 4.2. Let δ > 0 and t ∈ N0. Recall that ∆′ = (p− q)n/q−∆. For the non-Markovian
model with ∆′ = o(n1/2+δ), it holds that

P[Pt+1] ⩾ P
[
|V (t−1)

− ∩ V
(t)
+ | ⩾ δn1/2+δ

]
− o(1).

Proof. For a vertex v, denote by v
(t)
+ , v

(t)
− the number of neighbors of v in V

(t)
+ , V

(t)
− respectively

for t ∈ N. First, we intersect with the event N c that there is no opinion changing from + to −
throughout the dynamics, thus removing a set of probability o(1) by Proposition 4.1. Next, we
intersect with the event

E :=
{
v
(0)
− ⩽ np+ n(δ+1)/2 and v

(0)
+ ⩾ (n+∆)q − n(δ+1)/2 for any v ∈ V

(0)
−

}
.

By (9) and the union bound, it holds that P[E c] = o(1). Therefore, it suffices to prove

P
[
Pc

t+1 ∩ E ∩ N c ∩ {|V (t−1)
− ∩ V

(t)
+ | ⩾ δn1/2+δ}

]
= o(1). (15)

Let Ft be the σ-algebra generated by (Gs,Ws)0⩽s⩽t−1, i.e., the first t − 1 days of the dynamics.

In the following, we condition on Ft and let v ∈ V
(t)
− . Denote by Pt the corresponding conditional

probability. Note that V
(t)
− is F-measurable while v

(t)
+ is not. By definition, on the event E ∩ N c

we have
v
(t−1)
+ ⩾ v

(0)
+ ⩾ (n+∆)q − n(δ+1)/2 and v

(t)
− ⩽ v

(0)
− ⩽ np+ n(δ+1)/2.

17



On the other hand, on the event {|V (t−1)
− ∩ V

(t)
+ | ⩾ δn1/2+δ} ∩ N c, it holds that

v
(t)
+ ⩾st v

(t−1)
+ + Bin(δn1/2+δ, q) ⩾ (n+∆)q − n(δ+1)/2 + Bin(δn1/2+δ, q),

where ⩽st means (first-order) stochastic dominance. It follows that on the event X := {|V (t−1)
− ∩

V
(t)
+ | ⩾ δn1/2+δ} ∩ N c ∩ E , we have

Pt

[
{v ̸∈ V

(t+1)
+ } ∩ X

]
= Pt

[
{v(t)+ ⩽ v

(t)
− } ∩ X

]
⩽ P

[
{(n+∆)q − n(δ+1)/2 + Bin(δn1/2+δ, q) ⩽ np+ n(δ+1)/2} ∩ X

]
⩽ exp

(
−2δq2n(δ+1)/2

)
,

where we have used our assumption ∆′ = o(n1/2+δ) and (9) in the last inequality. We finally
conclude from a union bound that

Pt

[
Pc

t+1 ∩ E ∩ N c ∩ {|V (t−1)
− ∩ V

(t)
+ | ⩾ δn1/2+δ}

]
⩽ n exp

(
−2δq2n(δ+1)/2

)
.

Taking expectation yields the claim (15) and hence completes the proof.

Proposition 4.3. Let δ > 0 and t ∈ N0. For the Markovian model,

P[Pt+1] ⩾ P
[
|V (t)

+ | ⩾ p

q
|V (t)

− |+ L

√
|V (t)

− | log |V (t)
− |
]
− o(1).

Proof. By the Markov property, we may assume t = 0 and write n = |V (t)
− | and

∆(n) ⩾

(
p− q

q

)
n+ L1

√
n log n.

Using similar arguments as in Lemma 3.3, one can prove that by choosing L1 above large enough,

for any v ∈ V
(0)
− ,

P
[
v ̸∈ V

(1)
−

]
⩽ Ln−2.

Using a union bound over the set V
(0)
− finishes the proof.

Next, we show for the Markovian model that a sufficient lead of Ω(n) will guarantee a win a.a.s.

Proposition 4.4. Let δ > 0 be arbitrary, then for the Markovian model, uniformly for n,∆ such
that ∆ > δn, it holds P[P] = 1− o(1).

Proof. Recall that {|V (t)
+ |} forms a Markovian random walk on [0, 2n + ∆]. We have showed in

Proposition 4.2 that once the random walk reaches 2n + ∆ − n/L then P happens with high
probability; thus it suffices if we show that starting from n+∆, the random walk is monotonically

non-decreasing. This motivates the study of the following conditional probability. Writing |V (0)
− | =

n and |V (0)
+ | = n+∆, We have

pn,n+∆ := P
[
|V (0)

+ ∩ V
(1)
− | ⩾ 1

∣∣|V (0)
+ ∩ V

(1)
− |+ |V (0)

− ∩ V
(1)
+ | ≠ 0

]

=
P
[
|V (0)

+ ∩ V
(1)
− | ⩾ 1

]
P
[
|V (0)

+ ∩ V
(1)
− |+ |V (0)

− ∩ V
(1)
+ | ≠ 0

] ⩽
P
[
|V (0)

+ ∩ V
(1)
− | ⩾ 1

]
P
[
|V (0)

− ∩ V
(1)
+ | ⩾ 1

] .
18



Using a union bound and similar arguments as in Lemma 3.3, we compute

P
[
|V (0)

+ ∩ V
(1)
− | ⩾ 1

]
⩽ LnP[Bin(n, q) > Bin(n+∆− 1, p)]

⩽ Ln2 max
j∈Z∩[nq,(n+∆−1)p]

P[Bin(n, q) > j] P[Bin(n+∆− 1, p) < j]

⩽ Ln2 exp(−C1n)

and

P
[
|V (0)

− ∩ V
(1)
+ | ⩾ 1

]
⩾ P[Bin(n+∆, q) > Bin(n− 1, p)]

⩾ max
k∈Z∩[nq,(n+∆−1)p]

P[Bin(n+∆, q) > k] P[Bin(n− 1, p) < k]

⩾
1

L
exp(−C2n)

where C1, C2 are constants that do not depend on n and C2 < C1 (here we use ∆ > δn). This shows
pn,n+∆ ⩽ L exp(−n/L). Using a union bound shows that with probability 1 − o(1), the random

walk {|V (t)
+ |} increases monotonically from n+∆ to 2n+∆− n/L, completing the proof.

4.2 Proof of Theorem 1

We recall from (8) that p−+ = P [Bin(n+∆, q) > Bin(n− 1, p)]. It follows from Hoeffding’s in-
equality that uniformly for ∆ ∈ [0, n/L], it holds

p−+ ⩽ L exp
(
−n

L

)
. (16)

Next, we study the transition probabilities of the Markov chain {|V (t)
+ |}t∈N. Consider the Markovian

model on SBM(j, 2n+∆− j, p, q) where j ∈ [2n+∆]. We denote by

pr(j) = pr(j;n,∆) := P
[
|V (0)

− ∩ V
(1)
+ | = 1

]
and pℓ(j) = pℓ(j;n,∆) := P

[
|V (0)

+ ∩ V
(1)
− | = 1

]
,(17)

where |V (0)
+ | = j and |V (0)

− | = 2n + ∆ − j. As a special case that corresponds to the first step of
the Markovian model on SBM(n+∆, n, p, q), we write

pr = pr(n+∆) = P
[
|V (0)

− ∩ V
(1)
+ | = 1

]
and pℓ = pℓ(n+∆) = P

[
|V (0)

+ ∩ V
(1)
− | = 1

]
.

Lemma 4.1. Consider the Markovian model on SBM(n+∆, n, p, q) where n+∆ = |V (0)
+ | > |V (0)

− | =
n. Then uniformly in n and ∆ ⩽ n/L, it holds that

pr
pℓ

⩾ 1 +
1

L
, (18)

and

P
[
|V (0)

− ∩ V
(1)
+ | ⩾ 2

]
+ P

[
|V (0)

+ ∩ V
(1)
− | ⩾ 2

]
pr + pℓ

⩽ L exp
(
−n

L

)
. (19)
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Proof. We label the vertices in V
(0)
+ by i ∈ [n + ∆] and vertices in V

(0)
− by j ∈ [n]. Recall that

the degree sequences of the graph SBM(n+∆, n, p, q) are sampled from three independent random
graphs G(n +∆, p), G(n, p) and G(n +∆, n, q), and we denote by D+, D−, and (S,T) the degree
sequences of these subgraphs, respectively.

Note that

P
[
|V (0)

− ∩ V
(1)
+ | = 1

]
⩽

n∑
j=1

P
[
j ∈ V

(0)
− ∩ V

(1)
+

]
= nP [T(1) > D−(1)]

= nP [Bin(n+∆, q) > Bin(n− 1, p)] = np−+,

where p−+ is defined in (8). On the other hand, by the union bound,

P
[
|V (0)

− ∩ V
(1)
+ | = 1

]
=

n∑
j=1

P
[
j ∈ V

(0)
− ∩ V

(1)
+ , and k /∈ V

(0)
− ∩ V

(1)
+ for all k ̸= j

]

⩾
n∑

j=1

(
P
[
j ∈ V

(0)
− ∩ V

(1)
+

]
−
∑

1⩽k⩽n
k ̸=j

P
[
j, k ∈ V

(0)
− ∩ V

(1)
+

])

=

n∑
j=1

P
[
j ∈ V

(0)
− ∩ V

(1)
+

]
−

∑
1⩽j,k⩽n

k ̸=j

P
[
j, k ∈ V

(0)
− ∩ V

(1)
+

]
.

To estimate the second term, we observe that for j ̸= k,

P
[
j, k ∈ V

(0)
− ∩ V

(1)
+

]
⩽ P̃

[
j, k ∈ V

(0)
− ∩ V

(1)
+

]
where P̃ is the probability measure of the graph G ∼ SBM(n+∆, n, p, q) conditioned on (j, k) /∈ E.
Let D̃+, D̃−, and (S̃, T̃) denote the degree sequences with respect to P̃. Then,

P̃
[
j, k ∈ V

(0)
− ∩ V

(1)
+

]
⩽ P̃

[
T̃(j) > D̃−(j)

]
P̃
[
T̃(k) > D̃−(k)

]
⩽ (P [Bin(n+∆, q) > Bin(n− 2, p)])2

⩽ L (P [Bin(n+∆, q) > Bin(n− 1, p)])2

⩽ Lp2−+.

This implies that

P
[
|V (0)

− ∩ V
(1)
+ | = 1

]
⩾ np−+ − Ln2p2−+ = (1− o(1))np−+,

where the last step follows from (16). Therefore, we conclude that

pr = P
[
|V (0)

− ∩ V
(1)
+ | = 1

]
= (1− o(1))np−+,

and a similar argument yields
pℓ = (1− o(1))(n+∆)p+−.

It follows that
pr
pℓ

⩾ (1− o(1))
np−+

(n+∆)p+−
⩾ (1− o(1))

(
1− 1

L2 + 1

)
p−+

p+−

20



where we used ∆ ⩽ n/L2 with L2 a large constant to be determined.
Consider the independent random variables T ∼ Bin(n+∆, q), S ∼ Bin(n, q), D− ∼ Bin(n−1, p)

and D+ ∼ Bin(n+∆− 1, p). By choosing L2 above large enough, in order to prove (18), it suffices
to show

P [T > D−]

P [S > D+]
⩾ 1 +

1

L
. (20)

Since Bin(n−1, p) ⩽st Bin(n+∆−1, p), we may replace D− in the numerator by D+. Similarly,
using stochastic dominance again, we may replace T with T ′ ∼ Bin(n+1, q). By a suitable coupling,
we may assume T ′ = S + ϵ where ϵ ∼ Bin(1, q) is independent from S, and (S, T ′) and D+ are
independent. It follows that

P [T > D−]

P [S > D+]
− 1 ⩾

P [T > D+]

P [S > D+]
− 1 ⩾

P [T ′ > D+]

P [S > D+]
− 1 =

P [S = D+, ϵ = 1]

P [S > D+]
=

q P [S = D+]

P [S > D+]
. (21)

To estimate the right-hand side of (21), note that

P [S = D+]

P [S = D+ + 1]
=

∑n+∆−1
x=0 P [D+ = x]P [S = x]∑n+∆−1

x=0 P [D+ = x]P [S = x+ 1]
.

Using log-concavity of the functions x 7→ P [D+ = x]P [S = x] and x 7→ P [D+ = x]P [S = x+ 1]
and that ∆ ⩽ n/L2, it is not hard to show that there exist q1, q2 depending only on p, q satisfying
nq < nq1 < nq2 < (n+∆)p so that∑n+∆−1

x=0 P [D+ = x]P [S = x]∑n+∆−1
x=0 P [D+ = x]P [S = x+ 1]

= (1 + o(1))

∑nq2
x=nq1

P [D+ = x]P [S = x]∑nq2
x=nq1

P [D+ = x]P [S = x+ 1]
,

and for some L3 > 0,

P [S = x]

P [S = x+ 1]
= (1 + o(1))

(1− q)x

q(n− x)
⩾ 1 +

1

L3
, for x ∈ [nq1, nq2] ∩ Z.

This implies that
P [S = D+]

P [S = D+ + 1]
⩾ 1 +

1

L3
. (22)

Recall that the probability mass function of a binomial distribution is log-concave, and that a
convolution of log-concave functions is log-concave. This implies the probability mass function of
S −D+ is log-concave. Combined with (22), we obtain

P [S > D+] ⩽
n+∆−1∑
x=1

P [S −D+ = x] ⩽
n+∆−1∑
x=1

(
L3

L3 + 1

)x−1

P [S = D+ + 1]

⩽ (L3 + 1)P [S = D+ + 1] .

Consequently, we have

P [S = D+]

P [S > D+]
⩾

P [S = D+]

(L3 + 1)P [S = D+ + 1]
⩾

1

L
.

Plugging back into (21) yields the desired (20).
To show (19), by the union bound, for i ̸= j,

P
[
|V (0)

− ∩ V
(1)
+ | ⩾ 2

]
⩽ n2 P

[
i, j ∈ V

(0)
− ∩ V

(1)
+

]
,
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and recall that for i ̸= j,

P
[
i, j ∈ V

(0)
− ∩ V

(1)
+

]
⩽ Lp2−+.

Therefore, it holds that

P
[
|V (0)

− ∩ V
(1)
+ | ⩾ 2

]
pr

⩽
Ln2p2−+

(1− o(1))np−+
⩽ L exp

(
−n

L

)
,

where the last step follows from (16). Similarly, we also have

P
[
|V (0)

+ ∩ V
(1)
− | ⩾ 2

]
pℓ

⩽ L exp
(
−n

L

)
.

Combining these together yields the desired result.

Proof of Theorem 1(i). We fix p, q ∈ [0, 1] with 0 ⩽ q < p ⩽ 1 and ∆ = 1, where the general case
∆ ⩾ 1 can be established using exactly the same proof with the same constant L. In this case,

{|V (t)
+ |} is a Markovian random walk on [0, 2n+1]∩Z whose transition probabilities are symmetric

along n+ 1/2.
Recall (17). By Lemma 4.1, there exists L2 such that the probabilities pr(j) and pℓ(j) at point

j ∈ [n + 1, n + n/L2] ∩ Z satisfy pr(j)/pℓ(j) ⩾ 1 + 1/L uniformly. It follows from Proposition

4.4 that given the random walk {|V (t)
+ |} reaches n + n/L2, P happens with probability 1 − o(1).

Thus by Markov property and symmetry of the random walk, it suffices to prove that {|V (t)
+ |}

reaches n+ n/L2 before n with probability at least 1/L. Define τ the hitting time of the random

walk with boundaries n + n/L2 and n. Note that for t < τ on the event At := {|V (t)
− ∩ V

(t+1)
+ | ⩽

1 and |V (t)
+ ∩ V

(t+1)
− | ⩽ 1},

P
[
|V (t+1)

+ | − |V (t)
+ | = 1

]
P
[
|V (t+1)

+ | − |V (t)
+ | = −1

] =
P
[
|V (t)

− ∩ V
(t+1)
+ | = 1 and |V (t)

+ ∩ V
(t+1)
− | = 0

]
P
[
|V (t)

− ∩ V
(t+1)
+ | = 0 and |V (t)

+ ∩ V
(t+1)
− | = 1

] ⩾
pr(|V (t)

+ |)
pℓ(|V

(t)
+ |)

⩾ 1 +
1

L
.

We say that the random walk performs a non-trivial move at time t if |V (t+1)
+ | ≠ |V (t)

+ |. Define
the event

A =
⋂

{
t<τ :|V (t)

+ |̸=|V (t+1)
+ |

}At.

This means that before the random walk is stopped, whenever it moves, the step length is one.
Taking intersection with the event A, it follows from a Gambler’s Ruin argument (e.g., [CCH00,

Theorem 1]) that P[|V (τ)
+ | = n + n/L2] ⩾ 1/L. It then suffices to prove that P[A] = 1 − o(1). By

Lemma 4.1 and union bound, with probability 1− o(1), each step length of the first n3 non-trivial

moves of {|V (t)
+ |} is one. Intersecting on this event, the probability that τ < n3, hence A occurs, is

1− o(1) due to standard estimates on hitting times (e.g., [Fel08]). This completes the proof of (i).
Part (ii). Assume ∆(n) → ∞ and pick another sequence κ(n) → ∞ such that κ(n) = o(∆(n)).

Let L2 be given as in Lemma 4.1. By Proposition 4.4, it suffices to show that the Markovian

random walk {|V (t)
+ |} reaches n+∆+ n/L2 before n+∆− κ(n) with probability tending to one.

Using similar arguments as in the proof of (i), we may intersect with the event that when the
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random walk moves, it is either the case |V (t)
− ∩ V

(t+1)
+ | = 1 and |V (t)

+ ∩ V
(t+1)
− | = 0, or the case

|V (t)
− ∩ V

(t+1)
+ | = 0 and |V (t)

+ ∩ V
(t+1)
− | = 1. Since

P
[
|V (t)

− ∩ V
(t+1)
+ | = 1 and |V (t)

+ ∩ V
(t+1)
− | = 0

]
P
[
|V (t)

− ∩ V
(t+1)
+ | = 0 and |V (t)

+ ∩ V
(t+1)
− | = 1

] ⩾ 1 +
1

L

uniformly given n+∆− κ(n) ⩽ |V (t)
+ | ⩽ n+∆+ n/L2, a standard Gambler’s Ruin estimate (e.g.,

[CCH00, Theorem 1]) completes the proof.

4.3 Proof of Theorems 2 and 3

By Proposition 4.1, it would be convenient for us to exclude the event N and assume that there
is no + opinion turning −. We will implicitly intersect with the event N c throughout the proofs
below.

Proof of Theorem 2. (i). Note that the event T contains the event that the dynamics halts at day

t with 0 < |V (t)
+ | < 2n+∆, i.e.,

P[T ] ⩾ P
[
|V (t)

− ∩ V
(t+1)
+ | = |V (t)

+ ∩ V
(t+1)
− | = 0 and 0 < |V (t)

+ | < 2n+∆
]
. (23)

Taking t = 0 in (23), this yields a first trivial lower bound

P[T ] ⩾ P
[
|V (0)

− ∩ V
(1)
+ | = |V (0)

+ ∩ V
(1)
− | = 0

]
.

We then use a union bound to control the right-hand side from below. Recall (8). Assume now
that

∆(n) ⩽

(
p− q

q

)
n−

√
n(log n+ log log n+ ω(1))

C ′ , (24)

where C ′ is given by (14). Lemma 3.3 then gives that p−+ = o(n−1). On the other hand, (9) yields

p+− ⩽ P
[
Bin(n, q) ⩾

(
p+ q

2

)
n

]
+ P

[
Bin(n+∆− 1, p) ⩽

(
p+ q

2

)
n

]
⩽ L exp

(
−n

L

)
.

Using a union bound, we compute

P[T ] ⩾ P
[
|V (0)

− ∩ V
(1)
+ | = |V (0)

+ ∩ V
(1)
− | = 0

]
⩾ 1−

∑
v∈V (0)

+

P
[
v ∈ V

(0)
+ ∩ V

(1)
−

]
−

∑
w∈V (0)

−

P
[
w ∈ V

(0)
− ∩ V

(1)
+

]
= 1− (n+∆)p+− − np−+ ⩾ 1− o(1).

We may assume now that (24) does not hold, so that Lemma 3.4 applies. To improve the bound
in (24) we let t = 1 in (23) and consider the lower bound

P[T ] ⩾ P
[
|V (1)

− ∩ V
(2)
+ | = |V (1)

+ ∩ V
(2)
− | = 0 and |V (0)

− ∩ V
(1)
+ | < n+∆

]
,

23



that is, the probability that the dynamics halts after day two. It follows from Proposition 4.1 that

|V (1)
+ ∩ V

(2)
− | = 0 a.a.s., so we bound P[|V (1)

− ∩ V
(2)
+ | = 0] from below. Assuming (2), we have by

Lemma 3.1 that with an = L(n/ log n)1/4/ exp(
√
dn),

P
[
|V (0)

− ∩ V
(1)
+ | ⩽ an

]
= (1− o(1))PBn

r2
,Bn+∆,n

q

[
|V (0)

− ∩ V
(1)
+ | ⩽ an

]
− o(1)

= (1− o(1))P[Bin(n, p−+) ⩽ an]− o(1)

⩾ (1− o(1))P

[
Bin

(
n,

Ln−3/4(log n)−1/4

exp(
√
6dn
2 )

)
⩽ an

]
− o(1)

= 1− o(1),

where we used Lemma 3.3 in the inequality. Thus we may intersect with the event {|V (0)
− ∩V

(1)
+ | ⩽

an} while removing a set of probability o(1).

Consider a fixed vertex v ∈ V
(0)
− . Our goal is to bound P[v ∈ V

(0)
− ∩ V

(1)
− ∩ V

(2)
+ ] from above.

Denote for j = 0, 1 by v
(j)
+ , v

(j)
− the number of positive and negative neighbors of v at day j. Note

that

(a) v
(1)
+ ⩽ v

(0)
+ + Bin(an, q), so that v

(1)
+ ⩽ v

(0)
+ + an a.a.s.;

(b) v
(1)
− ⩾ v

(0)
− − an;

(c) v
(0)
+ ∼ Bin(n+∆, q) and v

(0)
− ∼ Bin(n− 1, r2) are independent.

Therefore, by Lemma 3.4,

P
[
v ∈ V

(0)
− ∩ V

(1)
− ∩ V

(2)
+

]
= P

[
v
(0)
− ⩾ v

(0)
+ and v

(1)
− < v

(1)
+

]
⩽ P

[
v
(0)
− ⩾ v

(0)
+ and v

(0)
− ⩽ v

(0)
+ + an

]
= P[Bin(n+∆, q) ⩽ Bin(n− 1, r2) ⩽ Bin(n+∆, q) + 2an]

= o(n−1).

Thus it follows from the union bound that V
(0)
− ∩ V

(1)
− ∩ V

(2)
+ = ∅ a.a.s., proving (i).

Part (ii). This follows directly from Proposition 4.3, since the first step is the same for both
Markovian and non-Markovian models.

Part (iii). We may assume by (ii) that

∆(n) ⩽

(
p− q

q

)
n+ L

√
n log n,

so that Lemma 3.3 applies. By Proposition 4.2, it suffices to prove that for some δ > 0, P[|V (0)
− ∩

V
(1)
+ | ⩽ δn(δ+1)/2] = o(1). By Lemma 3.1, it suffices to show for some δ > 0 that for all r2 ∈

[p− L(log n)/n, p+ L(log n)/n],

PBn
r2

,Bn+∆,n
q

[
|V (0)

− ∩ V
(1)
+ | ⩽ δn(δ+1)/2

]
= o(1).

Recall our assumption that for some δ0 > 0,

∆′ =
(p− q)n

q
−∆ ⩽

√
(1/2− δ0)n log n

C ′ .
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Together with Lemma 3.3, this yields that

P[Bin(n− 1, r2) < Bin(n+∆, q)] ⩾
1

L
n(δ0+1)/2.

Thus by picking δ small enough, we have

PBn
r2

,Bn+∆,n
q

[
|V (0)

− ∩ V
(1)
+ | ⩽ δn(δ+1)/2

]
= P

[
Bin (n,P[Bin(n− 1, r2) < Bin(n+∆, q)]) ⩽ δn(δ+1)/2

]
= o(1).

This concludes the proof.

Part (iv). Again by Proposition 4.2, it suffices to prove P[|V (1)
− ∩ V

(2)
+ | ⩽ n(δ+1)/2] = o(1). Let

r2 ∈ [p− L(log n)/n, p+ L(log n)/n] be arbitrary. Using (iii), we may assume that

∆(n) ⩽

(
p− q

q

)
n−

√
(1/2− δ)n log n

C ′ ,

so that, by Lemma 3.3, it holds p̃−+ ⩽ Ln−2γ for some γ > 0. By Markov’s inequality, we have

PBn
r2

,Bn+∆,n
q

 n∑
j=1

1{D2(j)⩾T(j)} ⩾ n1−γ

 = o(1). (25)

Next, we show that

P
[
|V (0)

− ∩ V
(1)
+ | ⩾ L4

√
n log n

]
= 1− o(1) (26)

where L4 is a large constant to be determined. This can be proved in a similar way as in (iii)
as follows. It follows from our assumption (3) (with the constant L in (3) chosen large enough
depending on L4) and Lemma 3.3 that

PBn
r2

,Bn+∆,n
q

[
|V (0)

− ∩ V
(1)
+ | ⩽ L4

√
n log n

]
= P

[
Bin (n,P[Bin(n− 1, r2) < Bin(n+∆, q)]) ⩽ L4

√
n log n

]
⩽ P

[
Bin

(
n, 2L4

√
log n

n

)
⩽ L4

√
n log n

]
= o(1).

Let us continue to the proof of P[|V (1)
− ∩ V

(2)
+ | ⩽ n/2] = o(1), which is stronger than what we need.

We may intersect with the event {|V (0)
− ∩ V

(1)
+ | ⩾ L4

√
n log n}, thus removing a set of probability

o(1) by (26). Using Lemma 3.1, we may also move the probability measure from P to the i.i.d. model
PBn

r2
,Bn+∆,n

q
where |r2 − p| ⩽ L(log n)/n. Fix such an r2. We condition on the σ-algebra generated

by the initial configuration of the SBM, i.e., D1,D2,S,T, so that the remaining randomness are
the edge changes induced by the opinion changes after day one. It holds that

|V (1)
− ∩ V

(2)
+ | ⩾ |V (0)

− ∩ V
(1)
− ∩ V

(2)
+ | ⩾

n∑
j=1

1{0<D2(j)−T(j)<ξj}, (27)
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where ξj ∼ Bin(L4
√
n log n, q) is an i.i.d. sequence independent of everything else. This is because

for a vertex j ∈ V
(0)
− , if D2(j) − T(j) > 0 then j ∈ V

(1)
− , and if D2(j) − T(j) < ξj (where ξj

represents the new edges connecting j to V
(0)
− ∩ V

(1)
+ , which has a contribution with distribution

Bin(|V (0)
− ∩ V

(1)
+ |, q) conditioned on V

(0)
− ∩ V

(1)
+ by similar arguments as in Proposition 4.2), then

x ∈ V
(2)
+ (on the event N c). We obtain from (27) that

P
[
|V (1)

− ∩ V
(2)
+ | > n

2

]
= (1 + o(1))PBn

r2
,Bn+∆,n

q

[
|V (1)

− ∩ V
(2)
+ | > n

2

]
− o(1)

⩾ (1 + o(1))PBn
r2

,Bn+∆,n
q

 n∑
j=1

1{0<D2(j)−T(j)<ξj} >
n

2

− o(1).

To evaluate the probability above, we condition on everything except for {ξj}, which is i.i.d. in j
and independent of everything else. Since ξj ∼ Bin(L4

√
n log n, q), it suffices to prove (using that

we can pick L4 large enough) for some L5 > 0 that

PBn
r2

,Bn+∆,n
q

 n∑
j=1

1{0<D2(j)−T(j)<L5
√
n logn} >

n

2

 ⩾ 1− o(1).

By (25) and definition, this reduces to proving

P
[
Bin(n,P[Bin(n− 1, r2)− Bin(n+∆, q) < L5

√
n log n]) >

2n

3

]
⩾ 1− o(1).

Since ∆′ ⩽ L
√
n log n, the probability inside is 1−o(1) if L5 is chosen large enough. This completes

the proof.
Part (v) is a direct consequence of Proposition 4.1.

Proof of Theorem 3. (i) Similarly as in the first part of the proof of Theorem 2(i), it suffices to
consider the case

∆ ⩾

(
1− q

q

)
n− L

√
n log n,

so that Lemma 3.2 applies. Suppose that

∆(n) ⩽

(
1− q

q

)
n−

√
1− q

q

(√
n log n+ L6

√
n(log log n)2

log n

)
,

where L6 is a large constant to be determined. We may intersect with N c by Proposition 4.1.1

The key is to note that, conditioning on the sets V
(0)
− , . . . , V

(t)
− , the number of changes from − to

+ at time t, |V (t)
− ∩ V

(t+1)
+ |, follows the binomial distribution Bin(|V (t)

− |, pt), where

pt := pt(V
(0)
− , . . . , V

(t)
− )

= P

[
|V (t)

− | − Bin(|V (0)
− ∩ V

(t−1)
+ |, q)− Bin(|V (t−1)

− ∩ V
(t)
+ |, q)

⩽ Bin(n+∆, q) ⩽ |V (t)
− | − 1− Bin(|V (0)

− ∩ V
(t−1)
+ |, q)

]
. (28)

1Formally, we replace our model by one that does not allow opinion changing from + to −.
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This follows from the conditional independence of the number of + and − connections of each

vertex in V
(t)
− . Indeed, since {V (t)

− } is a decreasing set in t, we have for v ∈ V
(t)
− , the number of +

neighbors of v is Bin(n+∆+ |V (0)
− ∩ V

(t)
+ |, q) and the number of − neighbors is |V (t)

− | − 1.

In what follows, L might depend on δ and w.h.p. means happening with probability 1−n−ω(1).
We claim that with L6 chosen large enough, w.h.p. the following holds for all t ⩾ 1:

(a) |V (0)
− ∩ V

(t−1)
+ | ⩽

∑t−1
s=1

√
n

(logn)2s
⩽ L

√
n

(logn)2
;

(b) |V (t−1)
− ∩ V

(t)
+ | ⩽

√
n

(logn)2t
.

Given this claim, the proof is immediate, since this yields that the dynamics is stopped at time
t = log n w.h.p., while the number of opinion changes from − to + until time t = log n is bounded

by L
√
n

(logn)2
= o(n), hence the dynamics halts. The total probability of exceptional sets is bounded

by n−ω(1) log n = o(1).
To prove the above claim we use induction on t. The case t = 1 follows from a standard

computation using our assumption (4) and Lemma 3.2. Given the claim holds for t, we have

|V (0)
− ∩ V

(t)
+ | ⩽ |V (0)

− ∩ V
(t−1)
+ |+ |V (t−1)

− ∩ V
(t)
+ | ⩽

t∑
s=1

√
n

(log n)2s
⩽

L
√
n

(log n)2
.

Moreover, since |V (t)
− | ⩽ n, it holds that w.h.p.

|V (t)
− ∩ V

(t+1)
+ | ⩽ (log n)2|V (t)

− |pt ⩽ n(log n)2pt. (29)

By intersecting with the events |V (0)
− ∩ V

(t−1)
+ | ⩽ L

√
n

(logn)2
and |V (t−1)

− ∩ V
(t)
+ | ⩽

√
n

(logn)2t
in (28), we

have

pt ⩽ P

[
|V (t)

− | − Bin(|V (0)
− ∩ V

(t−1)
+ |, q)−

√
n

(log n)2t
⩽ Bin(n+∆, q)

⩽ |V (t)
− | − Bin(|V (0)

− ∩ V
(t−1)
+ |, q)

]
+ n−ω(1)

⩽ P

[
n− L

√
n

(log n)2
−

√
n

(log n)2t
⩽ Bin(n+∆, q) ⩽ n− L

√
n

(log n)2

]
+ n−ω(1)

⩽
(log n)L7−2t−L6+1

√
n

,

where the last step follows from Lemma 3.5 with some appropriate constant L7 > 0. Using (29) we

have |V (t)
− ∩ V

(t+1)
+ | ⩽

√
n(log n)L7+3−2t−L6 . Picking L6 ⩾ L7 + 5 finishes the induction step.

Parts (ii) and (iii) can be proved similarly as in parts (iii) and (iv) of Theorem 2, applying
Lemma 3.2 instead of Lemma 3.3. We leave the details to the reader.

5 Numerical Experiments

In this section, we present some numerical experiments to validate our main theorems and demon-
strate the plausibility of Conjecture 1. Throughout this section, we simulate the dynamics for
1000 times and check the frequencies of various outcomes. Recall that n represents the number of
vertices with opinion − in the initialization, and ∆ is the initial bias.
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5.1 Markovian model

For the Markovian model, we first focus on the power-of-one phenomenon. In Table 1, we experi-
ment on the Markovian model with ∆ = 1, p = 0.5, q = 0.3 and let the initial number of vertices
with opinion − increase.

Number of initial “−” 50 100 125 150 175 200 225 250

Winner “+” “+” “+” “+” “+” “+” “+” “+”

Averaged last day 7.68 26.90 62.21 146.36 380.47 1025.91 2757.31 6152.87

Frequency 717 677 679 679 687 625 656 633

Table 1: Simulation of the Markovian model when ∆ = 1, p = 0.5, q = 0.3.

As shown in Table 1, the frequency of the opinion + winning is greater than half of all instances
uniformly. This agrees with Part (i) in Theorem 1, that is, a single initial bias already leads to a
non-trivial advantage for winning in the end.

Next, recall that Part (ii) of Theorem 1 states that any initial bias of ω(1) will guarantee an
asymptotically almost sure win. To verify this, we simulate the dynamics with p = 0.5, q = 0.3
and choose two initial biases with different growth rates ∆(n) = ⌈log n⌉ and ∆(n) = ⌈n/10⌉. The
results are listed below.

Number of initial “−” 50 100 125 150 175 200 225 250

∆ = ⌈logn⌉ 4 5 5 6 6 6 6 6

Winner “+” “+” “+” “+” “+” “+” “+” “+”

Averaged last day 5.79 16.17 35.30 70.38 183.80 445.94 1288.29 3463.56

Frequency 982 989 988 998 994 999 991 990

Table 2: Simulation of the Markovian model when ∆ = ⌈log n⌉, p = 0.5, q = 0.3.

Number of initial “−” 50 100 125 150 175 200 225 250

∆ = ⌈n/10⌉ 5 10 13 15 18 20 23 25

Winner “+” “+” “+” “+” “+” “+” “+” “+”

Averaged last day 3.73 9.75 14.46 24.58 41.39 78.69 144.20 288.41

Frequency 1000 1000 1000 1000 1000 1000 1000 1000

Table 3: Simulation of the Markovian model when ∆ = ⌈n/10⌉, p = 0.5, q = 0.3.

In Table 2, the frequency of opinion + winning is greater than 98% of all outcomes. Similarly, in
Table 3, all simulations end up with opinion + winning. These confirms the theoretical result in
Part (ii) of Theorem 2.

Moreover, from the above results, we see that though a greater ∆ reduces the averaged needed
time for consensus, the consensus time still exhibits an exponential growth in n. This confirms our
statement in Remark 4.

5.2 Non-Markovian model

For the non-Markovian model, in Theorem 2, we analyzed the phase transition between a fast
consensus and halting of the dynamics. We conjectured in Conjecture 1 that this phase transition
is sharp and confirmed the conjecture in the special case p = 1 in Theorem 3. To verify this
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theoretical prediction, we consider a fixed n = 500 and set

∆(n) =

⌈(
p− q

q

)
n− L

√
n log n

⌉
,

with varying L. In particular, we focus on the outcomes near the critical value

L∗ = H(p, q) =

√
p(2− p− q)

q
.

In our simulations, the last day of the dynamics is averaged over all instances where consensus is
reached.

We first focus on the special case p = 1 and set q = 0.3. In this case, L∗ ≈ 2.788 is the critical
value for the phase transition. The simulations are listed below.

L ∆ Winner Last day Frequency L ∆ Winner Last day Frequency

0.0 1167 “+”/Halt 2.00 1000/0 0.5 1139 “+”/Halt 2.00 1000/0

1.0 1110 “+”/Halt 2.00 1000/0 1.5 1083 “+”/Halt 2.97 1000/0

2.0 1055 “+”/Halt 3.05 1000/0 2.5 1028 “+”/Halt 4.78 975/25

2.7 1017 “+”/Halt 6.06 772/228 2.788 1012 “+”/Halt 7.11 541/459

2.8 1011 “+”/Halt 7.06 505/495 3.0 1000 “+”/Halt 8.69 102/898

3.5 972 “+”/Halt — 0/1000 4.0 944 “+”/Halt — 0/1000

Table 4: Simulation of the non-Markovian model when ∆ =
⌈(

p−q
q

)
n− L

√
n log n

⌉
, p = 1.0, q = 0.3.

As shown in Table 4, when L < L∗, the opinion + wins with high frequency. In particular, opinion
+ wins almost surely when L becomes smaller and the consensus becomes faster. On the other
hand, when L > L∗, the dynamics will halt with high frequency and halting happens almost surely
as L gets larger. These observations agree with Theorem 3.

To verify Conjecture 1 in full generality, we now simulate the case where p = 0.5 and q = 0.3.
In this case, the critical value for the phase transition is L∗ ≈ 2.582. The results of the simulation
are listed below.

L ∆ Winner Last day Frequency L ∆ Winner Last day Frequency

0.0 334 “+”/Halt 2.00 1000/0 0.5 306 “+”/Halt 2.00 1000/0

1.0 278 “+”/Halt 2.66 1000/0 1.5 250 “+”/Halt 3.00 1000/0

2.0 222 “+”/Halt 4.33 1000/0 2.5 194 “+”/Halt 9.50 181/819

2.582 190 “+”/Halt 9.80 66/934 2.6 189 “+”/Halt 10.59 54/946

3.0 167 “+”/Halt — 0/1000 4.0 111 “+”/Halt — 0/1000

Table 5: Simulation of the non-Markovian model when ∆ =
⌈(

p−q
q

)
n− L

√
n log n

⌉
, p = 0.5, q = 0.3.

From Table 5, we can see a similar behavior of the outcomes as in the p = 1 case. When L < L∗,
the opinion + wins with high frequency. When L > L∗, the dynamics will halt with high frequency.
These simulations provide numerical evidence to support the validity of Conjecture 1.

6 Concluding Remarks

In this paper, we introduced and analyzed two models for majority dynamics on stochastic block
models. For the Markovian model, we showed that any initial bias of the opinions leads to a
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uniformly large advantage of the winning probabilities, and gave sufficient conditions for the leading
opinion to win a.a.s. For the non-Markovian model, we analyze the phase transition between a fast
consensus and a halt of the dynamics. A conjecture is made regarding the sharpness of the phase
transition, whose analogue in the case p = 1 is confirmed. In addition, in the following we mention
a few other interesting directions.

First, as mentioned in the introduction, the k-majority dynamics model serves as an alternative
to majority dynamics on a static random graph. It is not difficult to formulate k-majority dynamics
models on SBM with a community structure of those sharing the same opinion. In the literature
of k-majority dynamics, besides whether consensus is reached, the consensus time is also of great
interest. The corresponding analogues require further careful studies.

Second, a model of a similar flavor as our non-Markovian model arises when considering the
majority dynamics model for Erdős-Rényi graphs. Pick a constant K > 1. Suppose that each agent
alters their opinion only if the number of opposite opinions of theirs is at least K times the number
of their opinions. Similar questions can be asked such as what difference ∆ guarantees unanimity
of the advantageous opinion, and how many days it would take. In this case, the block structure is
encoded locally among the agents, instead of globally on the graph.

Third, for technical reasons we have focused on the case where p, q are constants in (0, 1) that
do not depend on n. In certain voting models, the sparser homogeneous case p = q ≫ n−3/5 are
considered; see [CKLT21, BCO+16]. Extensions of our results in this more general case require
further study, where we expect that the recent works of graph enumeration for sparse graphs
[LW17, LW20] will be applicable. Note that if p = a(log n)/n, q = b(log n)/n, the two blocks of a
stochastic block model are distinguishable only if |a− b| ⩾

√
2; see [ABH15, MNS14].
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[CER+15] Colin Cooper, Robert Elsässer, Tomasz Radzik, Nicolas Rivera, and Takeharu Shiraga.
Fast consensus for voting on general expander graphs. In International Symposium on
Distributed Computing, pages 248–262. Springer, 2015.

[CH56] Dorwin Cartwright and Frank Harary. Structural balance: a generalization of Heider’s
theory. Psychological Review, 63(5):277, 1956.

[CKLT21] Debsoumya Chakraborti, Jeong Han Kim, Joonkyung Lee, and Tuan Tran. Majority
dynamics on sparse random graphs. arXiv preprint arXiv:2105.12709, 2021.

[CNS19] Emilio Cruciani, Emanuele Natale, and Giacomo Scornavacca. Distributed community
detection via metastability of the 2-choices dynamics. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages 6046–6053, 2019.

[CRRS16] Colin Cooper, Tomasz Radzik, Nicolás Rivera, and Takeharu Shiraga. Fast plurality
consensus in regular expanders. arXiv preprint arXiv:1605.08403, 2016.

[CSZ20] Leran Cai, Thomas Sauerwald, and Luca Zanetti. Random walks on randomly evolving
graphs. In International Colloquium on Structural Information and Communication
Complexity, pages 111–128. Springer, 2020.

[DGM+11] Benjamin Doerr, Leslie Ann Goldberg, Lorenz Minder, Thomas Sauerwald, and Chris-
tian Scheideler. Stabilizing consensus with the power of two choices. In Proceedings
of the twenty-third annual ACM symposium on Parallelism in algorithms and architec-
tures, pages 149–158, 2011.

[EF93] Glenn Ellison and Drew Fudenberg. Rules of thumb for social learning. Journal of
political Economy, 101(4):612–643, 1993.

[Fel08] Willliam Feller. An introduction to probability theory and its applications, vol 2. John
Wiley & Sons, 2008.

[FKM20] Nikolaos Fountoulakis, Mihyun Kang, and Tamás Makai. Resolution of a conjecture on
majority dynamics: Rapid stabilization in dense random graphs. Random Structures
& Algorithms, 57(4):1134–1156, 2020.

31



[GL18] Mohsen Ghaffari and Johannes Lengler. Nearly-tight analysis for 2-choice and 3-
majority consensus dynamics. In Proceedings of the 2018 ACM Symposium on Princi-
ples of Distributed Computing, pages 305–313, 2018.

[Gra78] Mark Granovetter. Threshold models of collective behavior. American journal of
sociology, 83(6):1420–1443, 1978.
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