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Abstract

The stability and sensitivity of statistical methods or algorithms with respect to their data
is an essential problem in machine learning and statistics. One fundamental way to measure
the stability of an algorithm is to study its performance under resampling of the data. In
this paper, we study the resampling sensitivity for the principal component analysis (PCA).
When the population covariance matrix of the data does not have a strong spike (i.e. in the
subcritical regime), we show that PCA is resampling sensitive by establishing a sharp threshold
for the resampling strength, above which resampling even a negligible portion of the input may
completely change the principal component; below this threshold, a moderate resampling has
almost no effect on the output. In contrast, if the population covariance matrix possesses a strong
spike, PCA will be stabilized by the planted signal. All of our results hold with universality,
regardless of the underlying data distribution.

1 Introduction

The study of stability and sensitivity of statistical methods and algorithms with respect to the input
data is an important task in machine learning and statistics [BE02, EEPK05, MNPR06, HRS16,
DHS21]. The notion of stability for algorithms is also closely related to differential privacy [DR14]
and generalization error [KN02]. To measure algorithmic stability, one fundamental question is
to study the performance of the algorithm under resampling of its input data [BCRT21, KB21].
Originating from the analysis of Boolean functions [BKS99, GS14], resampling sensitivity (also
called noise sensitivity) is an important concept in theoretical computer science, which refers to the
phenomenon that resampling a small portion of the random input data may lead to decorrelation of
the output.

In this work, we study the resampling sensitivity of principal component analysis (PCA). As
one of the most commonly used statistical methods, PCA is widely applied for dimension reduction,
feature extraction, etc [Joh07, DT11]. It is also used in other fields such as economics [VK06],
finance [ASX17], genetics [Rin08], and so on. The impact of noise on PCA is a significant problem
in statistics and machine learning, and has been a subject of extensive research. The performance of
PCA under the additive or multiplicative independent perturbation of the data matrix has been well
studied (see e.g. [BBAP05, BS06, Pau07, BGN11, CLMW11, FWZ18]). However, the influence of
resampling on the outcome, as a distinct form of data corruption, remains poorly understood. In
this paper, we aim to address this issue for the first time. Here, we emphasize that the resampling
of the input data may not have any structure, and the specific resampling procedure is given in
the next subsection. Our primary findings reveal that PCA is sensitive to resampling when the
population covariance matrix of the data lacks a strong signal. In such cases, even resampling a
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negligible portion of the data can cause a significant alteration in the resulting principal component,
rendering it orthogonal to the original direction. Conversely, when the population covariance of the
data possesses a strong spike, the planted signal acts to stabilize PCA.

1.1 Model and Main Results

Let z1, . . . , zn ∈ Rp be independent random vectors with covariance matrix Σ ∈ Rp×p, i.e. E[ziz⊤i ] =
Σ. The sample covariance matrix of the data z1, . . . , zn is defined as H := 1

n

∑n
i=1 ziz

⊤
i , and the

principal component of the data refers to the unit eigenvector corresponding to the top eigenvalue
of the sample covariance matrix. Equivalently, we can rewrite the sample covariance matrix
as H = (Σ1/2X)(Σ1/2X)⊤, where the square root matrix Σ1/2 is well defined via the spectral
decomposition and X ∈ Rp×n is a random matrix whose columns have an isotropic covariance matrix.
The assumptions on the data matrix are stated as follows.

Assumption 1. Let X = (Xij) be an p× n data matrix with independent real valued entries with
mean 0 and variance n−1,

Xij = n−1/2xij , E[xij ] = 0, E[x2ij ] = 1. (1)

Furthermore, we assume the entries xij have a sub-exponential decay, that is, there exists a constant
θ > 0 such that for u > 1,

P(|xij | > u) ≤ θ−1 exp(−uθ). (2)

Note that we do not require the i.i.d. condition for the data. The sub-exponential decay
assumption is mainly for convenience, and other conditions such as the finiteness of a sufficiently
high moment would be enough.

Motivated by high-dimensional statistics, we will work in the proportional growth regime n ≍ p.

Assumption 2. Throughout this paper, to avoid trivial eigenvalues, we will be working in the regime

lim
n→∞

p/n = ξ ∈ (0, 1) or p/n ≡ 1.

In the case lim p/n = 1, our assumption p/n ≡ 1 is due to some technicalities in random matrix
theory. Specifically, our proof relies on the delocalization of eigenvectors in the whole spectrum. As
one of the major open problems in random matrix theory, delocalization of eigenvectors near the
lower spectral edge is not known in the general case with just lim p/n = 1 [AEK14, BEK+14]. The
strictly square assumption p ≡ n can be slightly relaxed to |n− p| = po(1) (see e.g. [Wan22]), but we
do not pursue such an extension for simplicity.

For the population covariance matrix Σ, we are interested in the spiked covariance model, which
was initiated by Johnstone [Joh01].

Σ = Ip +

r∑
i=1

σ̃iyiy
⊤
i ,

where r is a fixed integer, the constants {σ̃i}ri=1 represent strengths of the signals, and {yi}ri=1 is
an orthonormal basis of eigenvectors. It is well known that the BBP phase transition [BBAP05,
BGN11, BKYY16] affirms that if σ̃i >

√
ξ, then the i-th spike will give rise to an outlier of the

spectrum of the sample covariance matrix H. When all σ̃i ≤
√
ξ, we call it a weakly spiked model

and in particular when Σ = Ip we call it the null model. On the other hand, if σ̃i >
√
ξ for some i,

we call it a strongly spiked model.
In our work, due to technical reasons, we assume that the population covariance matrix is

diagonal.
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Assumption 3. The population covariance matrix is diagonal, i.e. Σ = diag(d1, · · · , dp) with
constants d1 ≥ · · · ≥ dp ≥ 1. Moreover, the population covariance matrix differs from the identity by
a finite rank, i.e. |{i : di ̸= 1}| = r for some fixed integer r.

The reasons for the diagonal assumption on the population covariance are two-fold: (1) our proof
hinges on several technical results in random matrix theory such as delocalization of all eigenvectors
and Tracy-Widom concentration of the top eigenvalue, etc. Beyond the null model, these results
are only known in the case where the population covariance matrix is diagonal [BKYY16, DY18],
etc. (2) The diagonal population covariance implies that the entries in each data vector zi are
independent. In this way, when implementing the resampling procedure, the diagonal assumption
makes resampling of the original data Z = [z1, . . . , zn] equivalent to resampling of the entries in X.
This facilitates the model easier to state and the analysis more tractable.

We order the eigenvalues of the sample covariance matrix H := (Σ1/2X)(Σ1/2X)⊤ as λ1 ≥ · · · ≥
λp, and use vi ∈ Rp to denote the unit eigenvector corresponding to the eigenvalue λi. If the context
is clear, we just use λ := λ1 and v := v1 to denote the largest eigenvalue and the top eigenvector. We
also consider the eigenvalues and eigenvectors of the Gram matrix Ĥ := (Σ1/2X)⊤(Σ1/2X). Note
that Ĥ and H have the same non-trivial eigenvalues, and the spectrum of Ĥ is given by {λi}ni=1

with λp+1 = · · · = λn = 0. We denote the unit eigenvectors of Ĥ associated with the eigenvalue λi
by ui ∈ Rn. Writing U = [u1, · · · ,up] ∈ Rn×p and V = [v1, · · · ,vp] ∈ Rp×p, then these eigenvectors
may be connected by the singular value decomposition of the data matrix Σ1/2X = VSU⊤, where
S := diag(σ1, · · · , σp) with σi =

√
λi corresponds to the singular values. For convenience, we also

denote σ := σ1. And therefore, up to the sign of the eigenvectors, we have

(Σ1/2X)⊤vi =
√
λiui, (Σ1/2X)ui =

√
λivi.

We now describe the resampling procedure. We first emphasize that resampling the data
Z = [z1, . . . , zn] is equivalent to resampling the matrix X as the diagonal assumption of the
population Σ ensures that the entries in a data vector zi are independent. For a positive number
k ≤ np, define the random matrix X[k] in the following way. Let Sk = {(i1, α1), · · · , (ik, αk)} be a
set of k pairs chosen uniformly at random without replacement from the set of all ordered pairs (i, α)
of indices with 1 ≤ i ≤ p and 1 ≤ α ≤ n. We assume that the set Sk is independent of the entries of
X. The entries of X[k] are given by

X
[k]
i,α =

{
X′

i,α if (i, α) ∈ Sk,
Xi,α otherwise,

where (X′
i,α)1≤i≤p,1≤α≤n are independent random variables, independent of X, and X′

i,α has the same
distribution as Xi,α. In other words, X[k] is obtained from X by resampling k random entries of the
matrix, and therefore X[k] clearly has the same distribution as X. Let H[k] := (Σ1/2X[k])(Σ1/2X[k])⊤

be the sample covariance matrix corresponding to the resampled matrix X[k]. Denote the eigenvalues
and the corresponding normalized eigenvectors of H[k] by λ[k]1 ≥ · · · ≥ λ

[k]
p and v

[k]
1 , · · · ,v[k]

p . When
the context is clear, the principal component is just denoted by λ[k] and v[k]. Similarly, denote the
eigenvector of the Gram matrix Ĥ[k] := (Σ1/2X[k])⊤(Σ1/2X[k]) associated with the eigenvalue λ[k]i

by u
[k]
i .

The sensitivity and stability of PCA crucially depend on how strong the planted signal in the
spiked covariance is. To measure the strength of the spikes in the population covariance matrix, we
define the set of outlier indices

O := {i : di > 1 +
√
ξ}.
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If O = ∅, then the model is weakly spiked. On the other hand, if O ≠ ∅, the eigenvalues with indices
in O will be an outlier.

For the weakly spiked model, with the resampling parameter in two different regimes, we have
the following results.

Theorem 1.1 (Weakly spiked model: sensitivity). Suppose the data profile X,Σ satisfy Assumptions
1, 2 and 3 with O = ∅, and let X[k] be the resampled matrix defined as above. For any ϵ0 > 0, if
k ≥ n5/3+ϵ0 , then the associated principal components are asymptotically orthogonal, i.e.

lim
n→∞

E
∣∣∣⟨v,v[k]⟩

∣∣∣ = 0, and lim
n→∞

E
∣∣∣⟨u,u[k]⟩

∣∣∣ = 0. (3)

Moreover, in the null model, the threshold for k can be improved to k ≫ n5/3.

Theorem 1.2 (Weakly spiked model: stability). Suppose the data profile X,Σ satisfy Assumptions
1, 2 and 3 with O = ∅, and let X[k] be the resampled matrix defined as above. For any ϵ0 > 0,

max
1≤k≤n5/3−ϵ0

min
s∈{−1,1}

√
n∥v − sv[k]∥∞

prob−−−→ 0, (4)

where prob−−−→ means convergence in probability. The same result also holds for u and u[k].

These two theorems together state that the critical threshold for the resampling strength is of
order k ≍ n5/3. Note that n5/3 compared with the total number of inputs np ≍ n2 is negligible. We
show that, above the threshold n5/3, resampling even a negligible portion of the data will result in a
dramatic change of the resulting principal component, in the sense that the new principal component
is asymptotically orthogonal to the old one; while below the threshold, a relatively mild resampling
has almost no effect on the corresponding new principal component. If considering the eigenvector
overlaps |⟨v,v[k]⟩| and |⟨u,u[k]⟩|, these quantities exhibit sharp phase transitions from 1 to 0 near
the critical threshold k ≍ n5/3.

We remark that the phase transition stated in the above theorems is not restricted to the top
eigenvectors v,v[k],u,u[k]. With essentially the same arguments, we can prove that for any fixed
m > 0, the m-th leading eigenvectors vm,v

[k]
m and um,u

[k]
m exhibit the same phase transition at the

critical threshold of the same order n5/3.
In contrast, for the strongly spiked model, the spike forces the principal components to be

correlated with the planted signals. Therefore, in this case, PCA performs better stability than in
the weakly spiked model.

Theorem 1.3 (Strongly spiked model: stability). Suppose the data profile X,Σ satisfy Assumptions
1, 2 and 3, and let X[k] be the resampled matrix defined as above. If O ≠ ∅, for any i ∈ O and k ≥ 0,
almost surely we have

∣∣∣⟨vi,v
[k]
i ⟩
∣∣∣ ≥ 1− 4

1−

√√√√1− ξ
(di−1)2

1 + ξ
di−1

+ o(1). (5)

Finally, we remark that though the resampling procedure is done uniformly at random for all
entries, the proof proceeds as well if we choose to resample the columns. If we resample K columns
uniformly at random, then all results are still valid with the threshold K ≍ n2/3.
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1.2 Comparison with Previous Work

The resampling sensitivity of the leading eigenvector for Wigner matrices and Erdős-Rényi graphs
has been studied in [BLZ20, BL22]. The problem discussed in our paper shares a similar prototype,
and in particular the threshold k ≍ n5/3 for the stability-sensitivity transition in the weakly spiked
model coincides with the the threshold for Wigner matrices. Here we want to highlight the differences
between our work and theirs.

(i) Our model, the sample covariance matrix, has a Gram structure. This nonlinearity in the
matrix model requires more delicate techniques to analyze and the proofs in previous work
on symmetric linear model cannot be directly applied here. To overcome the nonlinearity, an
important linearization technique is introduced to reduce the interdependency of entries in the
sample covariance matrix.

(ii) Due to the Gram matrix structure, the entries in the sample covariance matrix are correlated.
In contrast to the case of symmetric matrices, resampling one entry in the data matrix will
result in changes of Θ(n) entries in the sample covariance matrix. Therefore, it is highly
non-trivial that our threshold coincides with the threshold for linear models.

(iii) The most important difference: our work is capable of dealing with heteroskedastic data, while
previous works are restricted to matrices with identical variances. This makes the applicability
of our result much wider. In particular, we establish a clear understanding for the effect of
spikes. Such a study of matrix models with planted signals in our work is beyond the scope of
previous works.

(iv) From the applied perspective, we uncover connections between the resampling sensitivity
phenomenon for PCA with signal detection, differential privacy and database alignment (see
Section 4). These application were not addressed in previous works.

Compared with previously mentioned work such as [BBAP05, Pau07, BGN11, FWZ18] that
mainly focused on PCA with additive or multiplicative independent noise, our setting is very different.
In our model, if writing the resampling effect as an additive or multiplicative perturbation, then this
noise is not independent of the signal and does not possess any special structure. In contrast, in
previous work, sometimes low-rank assumptions on the structure of the matrix or the noise, or some
kind of incoherence conditions were imposed. In our work, we have almost no assumption on the
data other than a sub-exponential decay condition. Moreover, we highlight that our results have
universality. In particular, we do not need to know the specific distribution of the data and we do
not require the data is i.i.d sampled.

A similar framework of PCA with corrupted data is the robust PCA [CLMW11, XCS10].
Regarding connection with robust PCA, our setting does share some similarities with RPCA, as both
settings consider corruptions of the original data. In RPCA, corruption is usually related to outlier
distribution and we focus on recovering the data. On the other hand, the resampling sensitivity
setting in our work studies corruption of data by an independent copy of the same distribution. The
key point of our result is that even for two data matrices with the same marginal distribution, a
negligible portion of different entries may result in having drastically different principal components.
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2 Sensitivity Regime for Weakly Spiked Model

2.1 Heuristics

We provide a heuristic argument for deriving the threshold for the sensitivity regime. We consider the
derivative of the top eigenvalue as a function of the matrix entries. For a symmetric matrix A with
an eigenpair (λ,v), the derivative of λ with respect to the matrix entries is given by dλ = v⊤(dA)v.
Motivated by this, we have the approximation

λ[1] − λ ≈ v⊤
[
(Σ1/2X[1])(Σ1/2X[1])⊤ − (Σ1/2X)(Σ1/2X)⊤

]
v.

Note that the matrix in the parenthesis has only Θ(p) non-zero entries, and each entry is roughly of
size O(n−1+ε/2) for an arbitrarily small ε > 0 thanks to the sub-exponential decay assumption (2).
Also, the eigenvector v is delocalized in the sense that |v(m)| ≈ p−1/2+ε/4 for all m = 1, . . . , p. A
central limit theorem yields that approximately we have

λ[1] − λ ≈ O
(√

pn−1+ε/2p−1+ε/4p−1+ε/4
)
= O(n−3/2+ε).

By this heuristic argument and central limit theorem, we have

λ[k] − λ ≈ O(
√
kn−3/2+ε).

Note that from random matrix theory, we know that λ1 − λ2 is approximately of order n−2/3.
Therefore, if we have

√
kn−3/2+ε ≪ n−2/3 (this corresponds to k ≪ n5/3−ε), then the difference the

two top eigenvalues λ and λ[k] is much smaller than the first two eigenvalues λ1 and λ2 of the matrix
(Σ1/2X)(Σ1/2X)⊤. This implies that the perturbation effect on X[k] is small, and therefore in this
case it is plausible to believe that v[k] is just a small perturbation of v. Thus, for the threshold of
the sensitivity regime, we must expect k ≫ n5/3.

Our proof is essentially trying to make the above heuristics rigorous. To do this, a key observation
is that the inner products ⟨v,v[k]⟩ and ⟨u,u[k]⟩ can be related to the variance of the leading eigenvalue.

2.2 Connection with Variance of Top Eigenvalue

As mentioned above, the key step in the proof for sensitivity regime is to establish a connection
between the inner products of top eigenvalues with the variance of the top eigenvalue. Specifically,
we will prove

E
[
|⟨v,v[k]⟩|2

]
≤ Cn

3Var(σ)

k
+ o(1),

where C > 0 is some universal constant and σ =
√
λ is the leading singular value. A similar result is

also true for u and u[k]. More details are deferred to the Supplemental Material.
From random matrix theory [LS16, Wan19], we have Var(σ) = O(n−4/3+ϵ0/2) for any ϵ0 > 0.

Then, based on this inequality, we derive the threshold k ≥ n5/3+ϵ0 for the sensitivity regime.
Moreover, in the null model, it is shown in [LR10] that the variance estimates can be slightly
enhanced to Var(σ) = O(n−4/3), which results in the improved threshold k ≫ n5/3 in this case.

3 Stability Regime

3.1 Weakly Spiked Model

To establish the stability of PCA when the resampling strength is mild, we will utilize tools from
random matrix theory and specifically the proof relies on the analysis of the resolvent matrix.
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Furthermore, to simplify the nonlinearity caused by Gram structure of the sample covariance matrix,
when considering the resolvent we use a linearization trick. For any z ∈ C with Im z > 0, the
resolvent is defined as

R(z) :=

(
−In (Σ1/2X)⊤

(Σ1/2X) −zIp

)−1

.

Similarly, we denote the resolvent of X[k] by R[k](z). The key idea for the proofs in the stability
regime is that eigenvectors can be approximated by resolvents and the resolvents are stable under
moderate resampling.

Resolvent Approximation To illustrate the usefulness of the resolvent, we show that the entries
of the resolvent can be used to approximate the product of entries in the eigenvector. For some
small δ > 0, let z0 = λ + iη with η = n−2/3−δ. In the regime k ≤ n5/3−ϵ0 for some ϵ0 > 0, there
exists some small c > 0 such that for all i, j = 1, . . . , p, we have

|ηImRn+i,n+j(z0)− v(i)v(j)| ≤ n−1−c,

and ∣∣∣ηImR
[k]
n+i,n+j(z0)− v[k](i)v[k](j)

∣∣∣ ≤ n−1−c.

A similar result also holds for u and u[k], and more details are deferred to the Supplemental Material.

Stability of the Resolvent Since the eigenvector can be approximated by the resolvent, it suffices
to show the stability of the resolvent. Consider the regime k ≤ n5/3−ϵ0 for some ϵ0 > 0. For some
small δ > 0 and all z = E + iη that is close to the upper spectral edge and η = n−2/3−δ, there exists
a small constant c > 0 such that the following is true for all i, j = 1, . . . , p and α, β = 1, . . . , n,∣∣∣R[k]

αβ(z)−Rαβ(z)
∣∣∣ ≤ 1

n1+cη
,

and ∣∣∣R[k]
n+i,n+j(z)−Rn+i,n+j(z)

∣∣∣ ≤ 1

n1+cη
.

This is the main technical part of the whole argument, and its proof relies on the Lindeberg exchange
method and a martingale concentration argument.

Combining the stability of the resolvents with the resolvent approximation for eigenvectors, we
can conclude that v and v[k] must be close (similarly, also for u and u[k]).

3.2 Strongly Spiked Model

For strongly spiked model, the famous BBP phase transition [BBAP05, BGN11] states that the top
eigenvector v has non-trivial correlation with the planted signal in the spiked covariance matrix. In
our model, we can write Σ =

∑p
i=1 dieie

⊤
i , where ei ∈ Rp is the i-th coordinate vector which has 1

as the i-th entry and 0 otherwise. With the presence of a strong spike d1 > 1 +
√
ξ, almost surely,

we have

⟨v, e1⟩2 =
1− ξ

(d1−1)2

1 + ξ
d1−1

+ o(1).

That is, the principal component is forced to lie on a cone around the signal direction e1. The same
phenomenon also happens for the resampled principal component v[k] for all k ≥ 0. Since both two
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principal components lie on the same cone, the angle between them cannot be too large (if choosing
an appropriate ± phase). Hence, we have a non-trivial lower bound for their overlap |⟨v,v[k]⟩|, which
confirms that a strong signal helps stabilize PCA.

4 Discussions and Applications

4.1 Further Extensions

A natural direction for future work is to relax the diagonal assumption of the population covariance
matrix. For a general population, the entries in each data vector may be correlated. This compli-
cates the resampling procedure. Meanwhile, from the random matrix theory side, some necessary
ingredients such as eigenvector delocalization in the whole spectrum and eigenvalue gap property
are unknown. A full understanding of the sensitivity of PCA with a general anisotropic population
would be an interesting open problem.

4.2 Extensions to Other Statistical Methods

Within the general PCA framework, one important variant is the kernel PCA, which is closely related
to the widely used spectral clustering [NJW01, VL07, CBG16]. The corresponding kernel random
matrices were studied in [EK10, CS13]. However, the study of these kernel random matrices are far
from being well-understood. In particular, the study of eigenvectors were very limited.

It would be interesting to explore whether other statistical method share the same resampling
sensitivity phenomenon. Random matrices associated with canonical correlation analysis (CCA)
or multivariate analysis of variance (MANOVA) are well studied [HPZ16, HPY18, Yan22]. We
anticipate that these models exhibit a similar stability-sensitivity transition as in PCA.

4.3 Signal Detection

Our results have a natural connection with the detection of signals in the spiked covariance model.
For a data matrix Z = [z1, . . . , zn] ∈ Rp×n in which zi are independent random vectors with a
rank-one spiked covariance matrix Σ = diag(1 + λ, 1, . . . , 1), our goal is to detect the presence of the
spike. To do this, we first subsample (n− n5/6) columns uniformly at random to form a submatrix
Z′ and denote its principal component as v′. Then we uniformly at random pick K = n5/6 samples
in the (n− n5/6) columns of Z′ and replace them by the remaining n5/6 columns in the original data
Z. This new submatrix is denoted as Z′′ and let v′′ be its principal component. Consider the test
statistic τ := |⟨v′,v′′⟩|. Then by our results Theorem 1.1 and Theorem 1.3, if λ ≤

√
ξ, we expect

τ = o(1); while if λ >
√
ξ, we will have τ ≥ c for some c > 0 almost surely.

It is well-known that λ =
√
ξ is the information-theoretic limit for strong detection of spikes

[PWBM18, JCL21]. Hence, our resampling sensitivity result yields another test statistic achieving
optimal strong detection.

4.4 Differential Privacy

In our paper, we study the stability of the top eigenvalue and the top eigenvector under resampling
in terms of bounding the ℓ∞ distance. Such stability estimates can be regarded as the global
sensitivity of PCA performed on neighboring datasets. This measurement is closely related to the
analysis of differential privacy [DR14]. PCA under differential privacy was previous studied in
[BDMN05, CSS13], etc. Our result revisit the problem of designing a private algorithm for solving
the principal component. Here we remark that though the statements in Theorem 1.1 and Theorem
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1.2 are qualitative, a careful examination of the proof can yield some quantitative estimates. Based on
the stability estimates in terms of the ℓ∞ metric, a simple Laplace mechanism produces a differentially
private version of PCA for computing the top eigenvalue or the top eigenvector. However, compared
with [CSS13], our results are limited in the sense that their results are non-asymptotic for all sample
size n and data dimension p, while ours are restricted to the proportional growth regime.

Moreover, previous works on differentially private PCA focused on neighbouring datasets that
differ by one sample vector. Our result may be seen as a refined notion of privacy, since we can
analyze the sensitivity of PCA over two “neighbouring" datasets with k different entries for any k.

Meanwhile, the largest eigenvalue of the sample covariance matrix plays an important rule in
hypothesis testing. For example, the Roy’s largest root test is used in many problems (see e.g.
[JN17]). Our result may provide useful insights to construct a differentially private test statistic
based on the top eigenvalue.

4.5 Database Alignment

Database alignment (or in some cases graph matching) refers to the optimization problem in which
we are given two datasets and the goal is to find an optimal correspondence between the samples
and features that maximally align the data. For datasets X,Y ∈ Rp×n, we look for permutations
πs ∈ Sn and πf ∈ Sp to solve the optimization problem

max
πs,πf

p∑
i=1

n∑
α=1

XiαYπf(i)πs(α),

where Sn and Sp are the sets of all permutations on [n] and [p], respectively. This problem is closely
related to the Quadratic Assignment Problem (QAP), which is known to be NP-hard to solve or
even approximate. The study of the alignment problem for correlated random databases has a long
history. The previous work mainly considered matrices that are correlated through some additive
perturbation, and some of the general model were studied with a homogeneous correlation (i.e. the
correlation between all correponding pairs are the same). See for example [DCK19, WXS22] and
many other works.

Our resampling procedure may be regarded as a corruption of the dataset, which is a different
kind of correlation compared with previous work. To our knowledge, this is the first time to consider
database alignment with data corruption. To state the setting of the problem, we have two matrices
X ∈ Rp×n, Y = ΠfX

[k]Π⊤
s where X is a random matrix satisfying Assumption 1, 2 and 3, and

Πs and Πf are permutation matrices of order n and p chosen uniformly at random. The goal is to
recover the permutations Πs and Πf based on the observations X and Y. Here, we can think of Y
as the unlabeled version of X with corruption. By considering the covariance matrices, we have

A = XX⊤, B = YY⊤ = Πf

(
X[k](X[k])⊤

)
Π⊤

f ,

and similarly for Πs by considering the Gram matrix. A natural idea to reconstruct the permutations
Πs (and Πf) is to align the top eigenvectors of the matrices A and B (and Â and B̂). This spectral
method is a natural technique for database alignment and graph matching (e.g. [GLM22]). We
are interested in under what resampling strength, this PCA-based algorithm can almost perfectly
reconstruct the permutations, and under what condition this method completely fail. See the
supplemental material for more discussions.
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5 Numerical Experiments

5.1 Synthetic Data

We validate our theoretical prediction by first checking the performance of PCA on synthetic data.
We first focus on the weakly spiked model, and consider a data matrix of size 250 × 1000. To
highlight the universality of our results, we will consider Gaussian data and two-point data. In
the Gaussian case, the matrix X consists of i.i.d. N (0, 1) entries. In the two-point distribution
case, the matrix X consists of i.i.d. entries taking value in {±1} with equal probability 1

2 . For the
population covariance Σ, we consider both the null model and a general weakly spiked model in
which the signal is of rank r = 10 with strength {di}10i=1 uniformly sampled from (1, 32). To visualize
the stability-sensitivity transition, we focus on the overlap of the leading eigenvectors |⟨v,v[k]⟩| and
|⟨u,u[k]⟩| as the observable. Note that, in the stability regime, the asymptotic colinearity (4) implies
that |⟨v,v[k]⟩|, |⟨u,u[k]⟩| → 1. Therefore, we expect a phase transition from 1 to 0 at the critical
threshold k ≍ n5/3. As shown in Figure 1, there is a clear phase transition for the overlap varying
from 1 to 0. It provides good evidence that the transition happens at the critical threshold k ≍ n5/3.

(a) The overlap |⟨v,v[k]⟩|
in null model

(b) The overlap |⟨u,u[k]⟩|
in null model

(c) The overlap |⟨v,v[k]⟩|
in weakly spiked model

(d) The overlap |⟨u,u[k]⟩|
in weakly spiked model

Figure 1: Inner products of the leading eigenvectors for 250 × 1000 matrices with Gaussian and
two-point data. The horizontal axis is the resampling strength, given by logn(4k). Each experiment
is averaged over 50 repetitions.

For the strongly spiked model, we set the population covariance matrix to have a rank-one signal
with strength d1 = 1 + λ. We consider Gaussian matrices X as above with sizes 250 × 1000 and
1000 × 1000. As shown in Figure 2, the below the corresponding critical signal strength λ = 0.5
(resp. λ = 1 for the square case), PCA exhibits stability-sensitivity transition as in the weakly
spiked model; while above the critical strength, there is a non-trivial overlap between the principal
components. These confirm our theoretical predictions.

(a) Strongly spiked model
with ξ = 1/4

(b) Strongly spiked model
with ξ = 1

Figure 2: Overlap of principal components in strongly spiked model with n = 1000 samples. The
resampling strength is given by logn(k/ξ). Each experiment is averaged over 50 repetitions.
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5.2 Real Dataset: Peripheral Blood Mononuclear Cells

We further check our results by working with the real dataset of Peripheral Blood Mononuclear Cells
(PBMC), where the raw data is publicly available at https://cf.10xgenomics.com/samples/cell/
pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz. We use the R toolkit Seurat (https://
satijalab.org/seurat/articles/pbmc3k_tutorial.html) for preprocessing of the data (in which
the outlier genes will be eliminated). The dataset contains N = 13714 gene expressions and p = 2700
cells, and PCA is used for dimension reduction and cell clustering. To make it more meaningful in
real-world applications, the resampling is done in a slightly different way: we resample a whole gene
expression each time instead of resampling single entries of the data matrix. This may be seen as
choosing different subsamples when applying a subsampling procedure (which is commonly used
in biostatistics). Specifically, we first randomly subsample n = 3000 gene expressions and denote
it as our data X. Then we resample K gene expressions in X uniformly at random by replacing
them with randomly chosen K gene expressions from the remaining dataset that were not previously
subsampled. The data obtained after this resampling is denoted by Y. We then compute the inner
product of the corresponding principal component of X and Y. The results are listed in the following
table

log(K)/ log(n) 0.0 0.1 0.2 0.3 0.4 0.5
|⟨PC(X),PC(Y)⟩| .9999 .9998 .9993 .9989 .9983 .9787
log(K)/ log(n) 0.6 0.7 0.8 0.9 1.0
|⟨PC(X),PC(Y)⟩| .9665 .7046 .2772 .1178 .0419

In this setting, resampling each gene will result in resampling of p = 2700 entries in the data.
Therefore, the theoretical threshold should be at order Θ(n5/3/p) = Θ(n2/3), as mentioned at the
end of Section 1.1. As we can see from the table, a clear transition happens near this threshold,
showing that our theoretical prediction is valid for real data. In this case, the resampling transition
can also be interpreted as PCA being sensitive to random subsampling of the data when the data
does not contain a strong signal.

A Notations and Organization

We use C to denote generic constant, which may be different in each appearance. We denote A ≲ B
if there exists a universal C > 0 such that A ≤ CB, and denote A ≳ B if A ≥ CB for some universal
C > 0. We write A ≍ B if A ≲ B and B ≲ A.

For the analysis of the sample covariance matrix, it is useful to apply the linearization trick
(see e.g. [Tro12, DY18]). Specifically, we will analyze the symmetrization of Σ1/2X. To ease the
representation, we drop the dependency on Σ in the notation since the population matrix is fixed
throughout, and the symmetrization is denoted as

X̃ :=

(
0 (Σ1/2X)⊤

(Σ1/2X) 0

)
(6)

The spectrum of the symmetrization X̃ are given by the singular values {
√
λm}pm=1 of Σ1/2X, the

symmetrized singular values {−
√
λm}pm=1, and trivial eigenvalue 0 with multiplicity n − p. Let

wi := (u⊤
i ,v

⊤
i )

⊤ ∈ Rn+p be the concatenation of the eigenvectors ui and vi. Then wi is the
eigenvector of X̃ associated with the eigenvalue

√
λi. Indeed, we have(

0 (Σ1/2X)⊤

(Σ1/2X) 0

)(
ui

vi

)
=

(
(Σ1/2X)⊤vi

(Σ1/2X)ui

)
=

(√
λiui√
λivi

)
.
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An important probabilistic concept that will be used repeatedly is the notion of overwhelming
probability.

Definition A.1 (Overwhelming probability). Let {EN} be a sequence of events. We say that EN
holds with overwhelming probability if for any (large) D > 0, there exists N0(D) such that for all
N ≥ N0(D) we have

P(EN ) ≥ 1−N−D.

Organization The supplemental material is organized as follows. In Section B, we collect some
useful tools for the proof, including a variance formula for resampling and classical results from
random matrix theory. In Section C, we prove the sensitivity of PCA under excessive resampling for
the weakly spiked model. In Section D, we prove that PCA is stable in the weakly spiked model if
resampling of the data is moderate. The proof for the strongly spiked model is provided in Section
E. Finally, in Section F, we discuss the database alignment problem raised in the Main Part in more
detail.

B Preliminaries

B.1 Variance formula and resampling

An essential technique for our proof is the formula for the variance of a function of independent
random variables. This formula represents the variance via resampling of the random variables. This
idea is first due to Chatterjee [Cha05], and in this paper we will use a slight extension of it as in
[BLZ20].

Let X1, · · · , XN be independent random variables taking values in some set X , and let f : XN →
R be some measurable function. Let X = (X1, · · · , XN ) and X ′ be an independent copy of X. We
denote

X(i) = (X1, · · · , Xi−1, X
′
i, Xi+1, · · · , XN ), and X [i] = (X ′

1, · · · , X ′
i, Xi+1, · · · , XN ).

And in general, for A ⊂ [N ], we define XA to be the random vector obtained from X by replacing
the components indexed by A by corresponding components of X ′. By a result of Chatterjee [Cha05],
we have the following variance formula

Var (f(X)) =
1

2

N∑
i=1

E
[(
f(X)− f(X(i))

)(
f(X [i−1])− f(X [i])

)]
.

We remark that this variance formula does not depend on the order of the random variables. Therefore,
we can consider an arbitrary permutation of [N ]. Specifically, let π = (π(1), · · · , π(N)) be a random
permutation sampled uniformly from the symmetric group SN and denote π([i]) := {π(1), · · · , π(i)}.
Then we have

Var (f(X)) =
1

2

n∑
i=1

E
[(
f(X)− f(X(π(i)))

)(
f(Xπ([i−1]))− f(Xπ([i]))

)]
.

Note that, in the formula above, the expectation is taken with respect to both X, X ′ and the random
permutation π.

Let j have uniform distribution over [N ]. Let X(j)◦π([i−1]) denote the vector obtained from
Xπ([i−1]) by replacing its j-th component by another independent copy of the random variable Xj in
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the following way: If j belongs to π([i− 1]), then we replace X ′
j by X ′′

j ; if j is not in π([i− 1]), then
we replace Xj by X ′′′

j , where X ′′ and X ′′′ are independent copies of X such that (X,X ′, X ′′, X ′′′)
are independent. With this notation, we have the following estimates.

Lemma B.1 (Lemma 3 in [BLZ20]). Assume that j is chosen uniformly at random from the set
[N ] and independently of other random variables involved, we have for any k ∈ [N ],

Bk ≤
2Var (f(X))

k

(
N + 1

N

)
where for any i ∈ [N ],

Bi := E
[(
f(X)− f(X(j))

)(
f(Xπ([i−1]))− f(X(j)◦π([i−1]))

)]
and the expectation is taken with respect to components of vectors, random permutations π and the
random variable j.

B.2 Tools from random matrix theory

In this section we collect some classical results in random matrix theory, which will be indispensable
for proving the main theorems. These include concentration of the top eigenvalue, eigenvalue rigidity
estimates, and eigenvector delocalization. We focus on the weakly spiked model, and the BBP phase
transition for the strongly spiked model will be deferred to Section E.

To begin with, we first state some basic settings and notations. It is well known that the empirical
distribution of the spectrum of the null model (i.e. Σ = I) converges to the Marchenko-Pastur
distribution

ρMP(x) =
1

2πξ

√
[(x− λ−)(λ+ − x)]+

x2
, (7)

where the endpoints of the spectrum are given by

λ± = (1±
√
ξ)2. (8)

Beyond the null model, where the population covariance matrix is not identity, the convergence of the
empirical spectral measure deviates from the ordinary Marchenko-Pastur law in general and instead
converges to a distinct limiting distribution known as the deformed Marchenko-Pastur law. The
deformed Marchenko-Pastur distribution, denoted as ρfc, is characterized by its Stieltjes transform.
For a probability measure ρ on the real line, the Stieltjes transofrm is defined as

mρ(z) :=

∫
R

1

x− z
dρ(x), z ∈ C+,

where C+ := {z ∈ C : Im z > 0} is the upper half plane of C. The Stieltjes transform is an important
object in probability theory with two useful applications: (1) the convergence of the probability
measure is equivalent to the convergence of the Stieltjes transform; (2) if the probability measure ρ
is absolutely continuous with respect to the Lebesgue measure, it can be recovered from its Stieltjes
transform by the inversion formula

ρ(x) = lim
η↓0

1

π
Immρ(x+ iη).

For the deformed Marchenko-Pastur law, we denote its Stieltjes transform by mfc. The notation
mfc stands for free convolution, as the spectral measure of the sample covariance matrix is given by
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the multiplicative free convolution of the Marchenko-Pastur law and the spectral measure of the
population covariance matrix. Suppose the empirical spectral measure µ̂ of the population covariance
matrix Σ converges to a limiting law µ. Then mfc is determined by the following self-consistent
equation

1

mfc(z)
= −z + ξ

∫
t

1 +mfc(z)t
dµ(t). (9)

Recall that Σ = diag(d1, · · · , dp), and indices with di > 1 +
√
ξ are called outliers i ∈ O. For the

weakly spiked model, we have O = ∅ and in this case the support of the deformed Marchenko-Pastur
law has only one connected component (see e.g. [LS16, DY18]). The right endpoint of the spectrum
λR, which is closely related to the concentration of the top eigenvalue, is determined by

λR =
1

a

(
1 + ξ

∫
ta

1− ta
dµ(t)

)
, (10)

where a ≥ 0 is the unique solution of the equation∫ (
ta

1− ta

)2

dµ(t) = ξ−1.

The left endpoint of the spectrum, denoted as λL, can be determined via a similar way.
An important result in random matrix theory is that the eigenvalues are concentrated. To state

the result, we define the typical locations of the eigenvalues:

γm := inf

{
E > 0 :

∫ E

−∞
ρfc(x)dx ≥

m

p

}
, 1 ≤ m ≤ p.

A classical result in random matrix theory is the rigidity estimates of the eigenvalues [PY14,
BEK+14, LS16, DY18]. Let m̂ := min(m, p + 1 − k), for any small ε > 0 and large D > 0 there
exists n0(ε,D) such that the following holds for any n ≥ n0,

P
(
|λm − γm| ≤ n−

2
3
+ε(m̂)−

1
3 for all 1 ≤ m ≤ p

)
> 1− n−D. (11)

We remark that the square case ξ ≡ 1 is actually significantly different, due to the singularity of the
Marchenko-Pastur law at x = 0. Near the left spectral edge, the typical eigenvalue spacing would be
of order O(n−2), which leads to a stronger concentration. In this case, the tight rigidity was proved
in [AEK14], and see [Wan22] for more explanations. However, the estimate (11) is good enough for
our purpose.

Another important result is the Tracy-Widom limit for the top eigenvalue (see e.g. [PY14, DY18,
Wan19, SX21]). Specifically,

Lemma B.2. Consider the weakly spiked model O = ∅. For any ε > 0, with overwhelming probability,
we have

|λ− λR| ≤ n−2/3+ε, and Var(λ) ≤ n−4/3+ε.

In particular, for the null model, we have Var(λ) ≲ n−4/3. Moreover, for any δ > 0, there exists a
constant c0 > 0 such that

P
(
λ1 − λ2 ≥ c0n−2/3

)
≥ 1− δ.
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Proof. The first result follows from the well-known Tracy-Widom limit for the top eigenvalue.
Specifically,

lim
n→∞

P
(
γn2/3(λ− λR) ≤ s

)
= F1(s),

where γ is a constant depending only on the ratio ξ and the limiting spectral measure µ of
the population covariance matrix, and F1 is the type-1 Tracy-Widom distribution (in particular,
[Wan19, SX21] provided quantitative rate of convergence). The variance estimate is then a natural
consequence. For the improved variance bound of the null model, the Gaussian case (i.e. the white
Wishart ensemble) was proved in [LR10], and the general case follows from universality, i.e. for any
fixed m

lim
n→∞

P
((

n2/3(λℓ − λR) ≤ sℓ
)
1≤ℓ≤m

)
= lim

n→∞
PG

((
n2/3(λℓ − λR) ≤ sℓ

)
1≤ℓ≤m

)
,

where PG denotes the probability measure associated with the Gaussian matrix. The spectral gap
estimate also follows from universality that the spectral statistics of the sample covariance matrix is
the same as the Gaussian Orthogonal Ensemble (GOE), i.e. for any fixed m

lim
n→∞

P
((

γn2/3(λℓ − λR) ≤ sℓ
)
1≤ℓ≤m

)
= lim

n→∞
P
((

n2/3(λGOE
ℓ − 2) ≤ sℓ

)
1≤ℓ≤m

)
For GOE, the desired spectral gap estimate was proved in e.g. [AGZ10].

Moreover, an estimate on the eigenvalue gap near the spectral edge is needed. The following
result was proved in [TV12, Wan12]

Lemma B.3. Consider the weakly spiked model O = ∅. For any c > 0, there exists κ > 0 such that
for every 1 ≤ i ≤ p, with probability at least 1− n−κ, we have

|λi − λi+1| ≥ n−1−c.

The property of eigenvectors is also a key ingredient for our proof. In particular, we extensively
rely on the following delocalization property, which implies that the eigenvectors are distributed
roughly uniformly on the unit sphere (see e.g. [PY14, BEK+14, DY18]). This is one of the most
significant difference between the weakly spiked model and the strongly spiked model. With a strong
spike in the population covariance matrix, the top eigenvector will be forced to lie on a cone around
the signal and hence is localized in some sense.

Lemma B.4. Consider the weakly spiked model O = ∅. For any ε > 0, with overwhelming probability,
we have

max
1≤i≤p

∥vi∥∞ + max
1≤j≤p

∥uj∥∞ ≤ n−
1
2
+ε.

C Proofs for the Sensitivity Regime of Weakly Spiked Model

C.1 Sensitivity analysis for neighboring data matrices

As a first step, we will first show that resampling of a single entry has little perturbation effect on
the top eigenvectors in the weakly spiked model. This will be helpful to control the single entry
resampling term in the variance formula (see Lemma B.1).

For any fixed 1 ≤ i ≤ p and 1 ≤ α ≤ n, let X(i,α) be the matrix obtained from X by
replacing the (i, α) entry Xiα with X′

iα. Define the corresponding covariance matrix H(i,α) :=

(Σ1/2X(i,α))(Σ
1/2X(i,α))

⊤, and use v(i,α) to denote its unit top eigenvector. Similarly, we denote by
u(i,α) the unit top eigenvector of Ĥ(i,α) := (Σ1/2X(i,α))

⊤(Σ1/2X(i,α)).
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Lemma C.1. Let c > 0 small and 0 < δ < 1
2 − c. For all 1 ≤ i ≤ n and 1 ≤ α ≤ p, on the event

{λ1 − λ2 ≥ n−1−c}, with overwhelming probability

max
i,α

min
s∈{±1}

∥v − sv(i,α)∥∞ ≤ n−
1
2
−δ (12)

and similarly
max
i,α

min
s∈{±1}

∥u− su(i,α)∥∞ ≤ n−
1
2
−δ

Proof. Let λ(i,α)1 ≥ · · · ≥ λ
(1,α)
p denote the eigenvalues of the matrix H(i,α), and let v

(i,α)
j denote

the unit eigenvector associated with the eigenvalue λ(i,α)j . Similarly, we define the unit eigenvectors

{u(i,α)
β } for the matrix Ĥ(i,α). Using the variational characterization of the eigenvalues, we have

λ1 ≥ ⟨v(i,α)
1 ,Hv

(i,α)
1 ⟩ = λ

(i,α)
1 + ⟨v(i,α)

1 , (H−H(i,α))v
(i,α)
1 ⟩.

Recall that Σ = diag(d1, . . . , dp). Since X and X(i,α) differ only at the (i, α) entry, we have

(H−H(i,α))jℓ = ((Σ1/2X)(Σ1/2X)⊤ − (Σ1/2X(i,α))(Σ
1/2X(i,α))

⊤)jℓ

=


di(Xiα −X′

iα)Xℓα if j = i, ℓ ̸= i,

di(Xiα −X′
iα)Xjα if j ̸= i, ℓ = i,

di(X
2
iα − (X′

iα)
2) if j = i, ℓ = i,

0 otherwise.

Thus, setting ∆iα := (Xiα −X′
iα), we have

⟨v(i,α)
1 , (H−H(i,α))v

(i,α)
1 ⟩

= 2v
(i,α)
1 (i)di∆iα

 p∑
j=1

(X(i,α))jαv
(i,α)
1 (j)−X′

iαv
(i,α)
1 (i)

+ di

(
v
(i,α)
1 (i)

)2
(X2

iα − (X′
iα)

2)

= 2v
(i,α)
1 (i)di∆iα

(
X⊤

(i,α)v
(i,α)
1

)
(α) + di

(
v
(i,α)
1 (i)

)2 (
X2

iα − (X′
iα)

2 − 2(Xiα −X′
iα)X

′
iα

)
= 2di

√
λ
(i,α)
1 v

(i,α)
1 (i)u

(i,α)
1 (α)∆iα + di

(
v
(i,α)
1 (i)2

)
∆2

iα.

(13)

This gives us

λ1 ≥ λ(i,α)1 − 2di

√
λ
(i,α)
1

(
|Xiα|+ |X′

iα|
)
∥v(i,α)

1 ∥∞∥u(i,α)
1 ∥∞ − di

(
|Xiα|+ |X′

iα|
)2 ∥v(i,α)

1 ∥2∞. (14)

Similarly,

λ
(i,α)
1 ≥ λ1 − 2di

√
λ1
(
|Xiα|+ |X′

iα|
)
∥v1∥∞∥u1∥∞ − di

(
|Xiα|+ |X′

iα|
)2 ∥v1∥2∞. (15)

By Assumption 1, the sub-exponential decay implies |Xiα|, |X′
iα| ≤ n−1/2+ε with overwhelming

probability for any ε > 0. Also, by Assumption 3, we know that di = Θ(1). Moreover, by the
delocalization of eigenvectors, with overwhelming probability, we have

max
(
∥v1∥∞, ∥u1∥∞, ∥v(i,α)

1 ∥∞, ∥u(i,α)
1 ∥∞

)
≤ n−

1
2
+ε.
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Moreover, by the rigidity estimates (11), with overwhelming probability we have

|λ1 − λR| ≤ n−
2
3
+ε, |λ(i,α)1 − λR| ≤ n−

2
3
+ε

Therefore, combining with a union bound, the above two inequalities (14) and (15) together yield

max
1≤i≤n,1≤α≤p

|λ1 − λ(i,α)1 | ≤ n−3/2+3ε (16)

with overwhelming probability.
We write v

(i,α)
1 in the orthonormal basis of eigenvectors {vj}:

v
(i,α)
1 =

p∑
j=1

ajvj .

Using this representation and the spectral theorem,
p∑

j=1

λjajvj = Hv
(i,α)
1 =

(
H−H(i,α)

)
v
(i,α)
1 +

(
λ
(i,α)
1 − λ1

)
v
(i,α)
1 + λ1v

(i,α)
1 .

As a consequence,

λ1v
(i,α)
1 =

p∑
j=1

λjajvj +
(
H(i,α) −H

)
v
(i,α)
1 +

(
λ1 − λ(i,α)1

)
v
(i,α)
1 .

For j ̸= 1, taking inner product with vj yields

λ1aj = ⟨vj , λ1v
(i,α)
1 ⟩ = λjaj + ⟨vj , (H(i,α) −H)v

(i,α)
1 ⟩+ (λ1 − λ(i,α)1 )aj ,

which implies (
(λ1 − λj) + (λ

(i,α)
1 − λ1)

)
aj = ⟨vj , (H(i,α) −H)v

(i,α)
1 ⟩. (17)

By a similar computation as in (13), we have∣∣∣⟨vj , (H(i,α) −H)v
(i,α)
1 ⟩

∣∣∣ = ∣∣∣∣di∆iα

(√
λ
(i,α)
1 vj(i)u

(i,α)
1 (α) +

√
λβv

(i,α)
1 (i)uj(α)

)∣∣∣∣
≲
(
|Xiα|+ |X′

iα|
) (
∥vj∥∞∥u(i,α)

1 ∥∞ + ∥v(i,α)
1 ∥∞∥uj∥∞

)
≤ n−

3
2
+3ε

(18)

with overwhelming probability, where the second step follows from rigidity of eigenvalues and the
last step follows from the sub-exponential decay assumption and delocalization of eigenvectors.

Consider the event E := {λ1 − λ2 ≥ n−1−c}. Fix some ω > 0 small. By rigidity of eigenvalues
(11), on the event E , with overwhelming probability

λ1 − λj ≳

{
n−1−c if 2 ≤ j ≤ nω,
j2/3n−2/3 if nω < j ≤ p.

(19)

On the event E , using (16), (18) and (19), with overwhelming probability we have

|aj | ≲

{
n−

1
2
+c+3ε if 2 ≤ j ≤ nω,

j−
2
3n−

5
6
+3ε if nω < j ≤ p.

(20)
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Choose s = a1/|a1|. Note that 1− |a1| ≤
∑p

j=2 |aj |. Thanks to the delocalization of eigenvectors,
with overwhelming probability, we have

∥sv1 − v
(i,α)
1 ∥∞ =

∥∥∥∥(s− a1)v1 +

p∑
j=2

ajvj

∥∥∥∥
∞
≤ (1− |a1|)∥v1∥∞ +

p∑
j=2

|aj |∥vj∥∞ ≤ n−
1
2
+ε

p∑
j=2

|aj |.

Thus, on the event E , it follows from (19) that

∥sv1 − v
(i,α)
1 ∥∞ ≲ n−

1
2
+ε

(
n−

1
2
+3ε+c+ω + n−

5
6
+3ε

p∑
j=nω

j−
2
3

)
≲ n−1+4ε+c+ω + n−1+4ε.

Choosing ε and ω small enough so that 4ε+ c+ ω < 1
2 , we conclude that (12) is true.

A similar bound for u can be shown by the same arguments for Ĥ = (Σ1/2X)⊤(Σ1/2X). Hence,
we have shown the desired results.

C.2 Proof of Theorem 1.1

Now we are ready to prove the resampling sensitivity for the weakly spiked model.
Let X′′ ∈ Rp×n be a copy of X that is independent of X and X′. For an arbitrary index (i, α)

with 1 ≤ i ≤ p and 1 ≤ α ≤ n, we introduce another random matrix Y(i,α) obtained from X by
replacing the (i, α) entry Xiα by X′′

iα. Similarly, we denote Y
[k]
(i,α) the matrix obtained via the same

procedure from X[k]. For the matrix X[k], we do the similar resampling procedure in the following
way: if (i, α) ∈ Sk, then replace X

[k]
iα with X′′

iα; if (i, α) /∈ Sk, then replace X
[k]
iα with X′′′

iα, where X′′′

is another independent copy of X, X′ and X′′.
In the following analysis, we choose an index (s, θ) uniformly at random from the set of all pairs

{(i, α) : 1 ≤ i ≤ p, 1 ≤ α ≤ n}. Let µ be the top singular value of Y(s,θ) and use f ∈ Rp and g ∈ Rn

to denote the normalized top left and right singular vectors of Y(s,θ). Similarly, we define µ[k], f [k]

and g[k] for Y
[k]
(s,θ). We also denote by h and h[k] the concatenation of f ,g and f [k],g[k], respectively.

Finally, let X̃[k], Ỹ and Ỹ[k] be the symmetrization (6) of X[k], Y and Y[k], respectively. When the
context is clear, we will omit the index (s, θ) for the convenience of notations.

Step 1. By Lemma B.1, we have

2Var(σ)

k
· np+ 1

np
≥ E

[
(σ − µ)

(
σ[k] − µ[k]

)]
. (21)

Using the variational characterization of the top singular value

⟨f ,Σ1/2Xg⟩ ≤ σ = ⟨v,Σ1/2Xu⟩, ⟨v,Σ1/2Yu⟩ ≤ µ = ⟨f ,Σ1/2Yg⟩.

This implies
⟨f ,Σ1/2(X−Y)g⟩ ≤ σ − µ ≤ ⟨v,Σ1/2(X−Y)u⟩. (22)

Applying the same arguments to X[k] and Y[k], we have〈
f [k],Σ1/2

(
X[k] −Y[k]

)
g[k]
〉
≤ σ[k] − µ[k] ≤

〈
v[k],Σ1/2

(
X[k] −Y[k]

)
u[k]
〉
.
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Since the matrices X and Y differ only at the (s, θ) entry, for any vectors a ∈ Rp and b ∈ Rn we
have

⟨a,Σ1/2(X−Y)b⟩ =
√
ds∆sθ a(s)b(θ),

〈
a,Σ1/2

(
X[k] −Y[k]

)
b
〉
=
√
ds∆

[k]
sθ a(s)b(θ),

where

∆sθ := Xsθ −X′′
sθ, and ∆

[k]
sθ :=

{
X′

sθ −X′′
sθ if (s, θ) ∈ Sk,

Xsθ −X′′′
sθ if (s, θ) /∈ Sk.

Therefore, √
ds∆sθ f(s)g(θ) ≤ σ − µ ≤

√
ds∆sθv(s)u(θ),

and √
ds∆

[k]
sθ f

[k](s)g[k](θ) ≤ σ[k] − µ[k] ≤
√
ds∆

[k]
sθv

[k](s)u[k](θ).

Consider

T1 := ds (∆sθv(s)u(θ))
(
∆

[k]
sθv

[k](s)u[k](θ)
)
, T2 := ds (∆sθ f(s)g(θ))

(
∆

[k]
sθ f

[k](s)g[k](θ)
)
,

T3 := ds (∆sθv(s)u(θ))
(
∆

[k]
sθ f

[k](s)g[k](θ)
)
, T4 := ds (∆sθ f(s)g(θ))

(
∆

[k]
sθv

[k](s)u[k](θ)
)
.

Then we have

min(T1, T2, T3, T4) ≤ (σ − µ)
(
σ[k] − µ[k]

)
≤ max(T1, T2, T3, T4). (23)

To estimate (23), we introduce the following events

E1 :=
{
max

(
∥v∥∞, ∥u∥∞, ∥f∥∞, ∥g∥∞, ∥v[k]∥∞, ∥u[k]∥∞, ∥f [k]∥∞, ∥g[k]∥∞

)
≤ n−

1
2
+ε
}
, (24)

and
E2 :=

{
max

(
∥v − g∥∞, ∥u− f∥∞, ∥v[k] − g[k]∥∞, ∥u[k] − f [k]∥∞

)
≤ n−

1
2
−δ
}
. (25)

Define the event E := E1 ∩ E2. On the event E , for all

J ∈
{
v(s)u(θ)v[k](s)u[k](θ),v(s)u(θ)f [k](s)g[k](θ), f(s)g(θ)v[k](s)u[k](θ), f(s)g(θ)f [k](s)g[k](θ)

}
we have ∣∣∣J − v(s)u(θ)v[k](s)u[k](θ)

∣∣∣ = O
(
n−2−δ+3ε

)
. (26)

Let T := min(T1, T2, T3, T4). On the event E , using (26) we have

T ≥ ds
(
∆sθ∆

[k]
sθ

)
v(s)u(θ)v[k](s)u[k](θ)−O

(
ds

∣∣∣∆sθ∆
[k]
sθ

∣∣∣n−2−δ+3ε
)
. (27)

Step 2. Next we claim that the contribution of T when E does not hold is negligible. Specifically,
we have

E [T1Ec ] = o(n−3). (28)

Recall that ds = Θ(1). Without loss of generality, it suffices to show that

E
[
∆sθ ∆

[k]
sθv(s)u(θ)v

[k](s)u[k](θ)1Ec

]
= o(n−3). (29)
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To see this, using 1Ec = 1E1\E + 1Ec
1
, we decompose the expectation into two parts

E
[
∆sθ ∆

[k]
sθv(s)u(θ)v

[k](s)u[k](θ)1Ec

]
= I1 + I2,

where

I1 := E
[
∆sθ ∆

[k]
sθv(s)u(θ)v

[k](s)u[k](θ)1E1\E

]
, I2 := E

[
∆sθ ∆

[k]
sθv(s)u(θ)v

[k](s)u[k](θ)1Ec
1

]
.

For the first term I1, by delocalization and the relation E1\E = E1\E2, we have

|I1| ≤ n−2+4εE
[∣∣∣∆sθ ∆

[k]
sθ

∣∣∣1E1\E2] ≤ n−2+4εE
[∣∣∣∆sθ ∆

[k]
sθ

∣∣∣1Ec
2

]
. (30)

Note that the random variable ∆sθ ∆
[k]
sθ and the event E2 are dependent. To decouple these variables,

we introduce a new event. Consider the event E3 := A ∪ B, where

A :=
{
min

(
σ1 − σ2, σ[k]1 − σ

[k]
2

)
≥ n−1−c

}
, B :=

{
min

(
µ1 − µ2, µ[k]1 − µ

[k]
2

)
≥ n−1−c

}
Then,

E
[∣∣∣∆sθ ∆

[k]
sθ

∣∣∣1Ec
3

]
≲ E

[(
∆2

sθ + (∆
[k]
sθ )

2
)
1Ec

3

]
≲ E

[(
X2

sθ + (X′
sθ)

2 + (X′′
sθ)

2 + (X′′′
sθ)

2
)
1Ec

3

]
≲ E

[(
X2

sθ + (X′
sθ)

2
)
1Bc

]
+ E

[(
(X′′

sθ)
2 + (X′′′

sθ)
2
)
1Ac

]
.

Observe that the random variables Xsθ and X′
sθ are independent of the event B, and the random

variable X′′
sθ is independent of A. Therefore, by Lemma B.3,

E
[(
X2

sθ + (X′
sθ)

2
)
1Bc

]
= O(n−1−κ), E

[(
(X′′

sθ)
2 + (X′′′

sθ)
2
)
1Ac

]
= O(n−1−κ).

By Lemma C.1, we have P(E3\E2) = O(N−D) for any fixed large D > 0. Using the Cauchy-Schwarz
inequality, we have

E
[∣∣∣∆sθ ∆

[k]
sθ

∣∣∣1Ec
2

]
= E

[∣∣∣∆sθ ∆
[k]
sθ

∣∣∣1Ec
3

]
+ E

[∣∣∣∆sθ ∆
[k]
sθ

∣∣∣1E3\E2]
= O(n−1−κ) +

√
E
[∣∣∣∆sθ ∆

[k]
sθ

∣∣∣2]√P(E3\E2)

= O(n−1−κ) +O(N−D)

= O(n−1−κ).

Choosing 4ε < κ, then (30) yields

|I1| ≤ O(n−2+4ε−1−κ) = o(n−3).

For the term I2, note that u, v, u[k] and v[k] are unit vectors. We have that

max(∥u∥∞, ∥v∥∞, ∥u[k]∥∞, ∥v[k]∥∞) ≤ 1.

Recall that E1 holds with overwhelming probability. By the Cauchy-Schwarz inequality, for any large
D > 0, we have

|I2| ≤ E
[∣∣∣∆sθ ∆

[k]
sθ

∣∣∣1Ec
1

]
≤

√
E
[∣∣∣∆sθ ∆

[k]
sθ

∣∣∣2]√P(Ec1) = O(N−D).

Hence we have shown the desired claim (29).
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Step 3. Combining (23), (27) and (28), we obtain

E
[
(σ − µ)

(
σ[k] − µ[k]

)]
≥ E

[
ds∆sθ∆

[k]
sθ v(s)u(θ)v

[k](s)u[k](θ)
]
+ o(n−3).

Since np+1
np ≤ 2 and ds = Θ(1), by (21) we have

E
[
∆sθ∆

[k]
sθ v(s)u(θ)v

[k](s)u[k](θ)
]
≲

Var(σ)

k
+ o(n−3). (31)

Since the random index (s, θ) is uniformly sampled, we have

E
[
∆sθ∆

[k]
sθ v(s)u(θ)v

[k](s)u[k](θ)
]
=

1

np
E

 ∑
1≤i≤n,1≤α≤p

∆iα∆
[k]
iα v(i)u(α)v[k](i)u[k](α)

 . (32)

Note that

∆iα∆
[k]
iα =

{
(Xiα −X′

iα)(X
′
iα −X′′

iα) if (i, α) ∈ Sk,
(Xiα −X′

iα)(Xiα −X′′′
iα) if (i, α) /∈ Sk.

In either case, we have E[∆iα∆
[k]
iα ] = p−1. Therefore,∑

1≤i≤n,1≤α≤p

E
[
∆iα∆

[k]
iα | Sk

]
v(i)u(α)v[k](i)u[k](α) =

1

p
⟨v,v[k]⟩⟨u,u[k]⟩.

Consequently, this implies

E

 ∑
1≤i≤n,1≤α≤p

E
[
∆iα∆

[k]
iα |Sk

]
v(i)u(α)v[k](i)u[k](α)

 =
1

p
E
[
⟨v,v[k]⟩⟨u,u[k]⟩

]
. (33)

Moreover, we claim that

E

 ∑
1≤i≤n,1≤α≤p

(
∆iα∆

[k]
iα − E

[
∆iα∆

[k]
iα |Sk

])
v(i)u(α)v[k](i)u[k](α)

 = o(n−1). (34)

For the ease of notations, we set Ξiα := ∆iα∆
[k]
iα − E[∆iα∆

[k]
iα |Sk]. It suffices to show that for all

pairs (i, α) we have
E
[
Ξiαv(i)u(α)v

[k](i)u[k](α)
]
= o(n−3). (35)

To see this, we introduce another copy of X, denoted by X′′′′, which is independent of all previous
random variables (X,X′,X′′,X′′′). For an arbitrarily fixed index (i, α), we define matrices X̂(i,α)

and X̂
[k]
(i,α) by resampling the (i, α) entry of X and X[k] with X′′′′

iα . Let û, v̂ be the left and right top

singular vector of X̂, and similarly û[k], v̂[k] for X̂[k]. Define

ψiα := v(i)u(α)v[k](i)u[k](α), ψ̂iα := v̂(i)û(α)v̂[k](i)û[k](α).

A crucial observation is that Ξiα and ψ̂iα are independent. This is because, conditioned on Sk, the
matrices X̂ and X̂[k] are independent of (Xiα,X

′
iα,X

′′
iα,X

′′′
iα). Such a conditional independence is
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also true for the singular vectors, and hence also holds for ψ̂iα. On the other hand, by definition, the
variable Ξiα only depends on (Xiα,X

′
iα,X

′′
iα,X

′′′
iα). Therefore,

E
[
Ξiαψ̂iα

]
= E

[
E[Ξiα|Sk]E[ψ̂iα|Sk]

]
= 0

Thus, we reduce (35) to showing

E
[
Ξiα

(
ψiα − ψ̂iα

)]
= o(n−3). (36)

The proof of (36) is similar as previous arguments. Consider the events

Ê1 :=
{
max

(
∥v∥∞, ∥u∥∞, ∥û∥∞, ∥v̂∥∞, ∥v[k]∥∞, ∥u[k]∥∞, ∥û[k]∥∞, ∥v̂[k]∥∞

)
≤ n−

1
2
+ε
}
,

Ê2 :=
{
max

(
∥v − v̂∥∞, ∥u− û∥∞, ∥v[k] − v̂[k]∥∞, ∥u[k] − û[k]∥∞

)
≤ n−

1
2
−δ
}
.

On the event Ê := Ê1 ∩ Ê2, we have |ψiα − ψ̂iα| = O(n−2−δ+3ε). Note that E[|Ξiα|] = O(n−1) since
E[|∆iα∆

[k]
iα |] = O(n−1). As a consequence,

E
[∣∣∣Ξiα(ψiα − ψ̂iα)

∣∣∣1Ê] = O(n−3−δ+3ε) = o(n−3). (37)

Using the same argument as in (29), we have

E
[∣∣∣Ξiα(ψiα − ψ̂iα)

∣∣∣1Êc

]
≲ N−2+4εE

[
|Ξiα|1Êc

]
= O(N−2+4εN−1−κ) = o(n−3), (38)

where κ is the constant in the gap property (Lemma B.3) Thus, by (37) and (38), we have shown
the desired claim (36).

Based on (31) and (32), combining (33) and (34) yields

1

np2
E
[
⟨v,v[k]⟩⟨u,u[k]⟩

]
≲

Var(σ)

k
+ o

(
1

n3

)
+ o

(
1

n2p

)
By Lemma B.2 we have Var(σ) = O(n−4/3+ε0/2) and the assumption k ≥ n5/3+ε0 , we have

E
[
⟨v,v[k]⟩⟨u,u[k]⟩

]
≤ np2

k
O(n−4/3+ε0/2) + o(1) = o(1).

This implies
E
[
|⟨v,v[k]⟩⟨u,u[k]⟩|

]
→ 0. (39)

In the null model, we have Var(σ) = O(n−4/3), and therefore the threshold can be improved to
k ≫ n5/3.

Step 4. Consider the symmetrization matrix X̃ defined in (6). The variational representation of
the top eigenvalue yields

σ =
⟨w, X̃w⟩
∥w∥22

, σ[k] =
⟨w[k], X̃[k]w[k]⟩
∥w[k]∥22

with ∥w∥22 = ∥w[k]∥22 = 2.

Using the same arguments as in Step 1-3, we can conclude that

E
[
|⟨w,w[k]⟩|2

]
= E

[
|⟨v,v[k]⟩+ ⟨u,u[k]⟩|2

]
→ 0.

Combined with (39), this gives us

E
[
|⟨v,v[k]⟩|2 + |⟨u,u[k]⟩|2

]
→ 0,

which proves the desired results.
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D Proofs for the Stability Regime for the Weakly Spiked Model

Throughout the whole section, we will focus on the behaviour of v and v[k]. Similar results also hold
for u and u[k] via the same arguments.

D.1 Linearization and local law of resolvent

In the study of sample covariance matrices, a convenient trick is to consider the symmetrization X̃
of the data matrix Σ1/2X (defined as in (6)) when exploring its spectral properties. For z ∈ C with
Im z > 0, We introduce the resolvent of this symmetrization

R(z) :=

(
−In (Σ1/2X)⊤

(Σ1/2X) −zIp

)−1

. (40)

Note that R(z) is not the conventional definition of the resolvent matrix, but we still call it resolvent
for convenience. For the ease of notations, we will relabel the indices in R in the following way:

Definition D.1 (Index sets). We define the index sets

I1 := {1, . . . , n} , I2 := {1, . . . , p} , I := I1 ∪ {n+ i : i ∈ I2} .

For a general matrix M ∈ R|I|×|I|, we label the indices of the matrix elements in the following
way: for a, b ∈ I, if 1 ≤ a, b ≤ n, then typically we use Greek letters α, β to represent them; if
n+ 1 ≤ a, b ≤ n+ p, we use the corresponding Latin letters i = a− n and j = b− n to represent
them.

The resolvent R is closely related to the eigenvalue and eigenvectors of the sample covariance
matrix. As discussed in [DY18][Equation (3.9),(3.10)], we have

Rαβ(z) =
n∑

ℓ=1

zuℓ(α)uℓ(β)

λℓ − z
, Rij(z) =

p∑
ℓ=1

vℓ(i)vℓ(j)

λℓ − z
, (41)

and

Riα(z) =

p∑
ℓ=1

√
λℓuℓ(α)vℓ(i)

λℓ − z
, Rαi(z) =

p∑
ℓ=1

√
λℓvℓ(i)uℓ(α)

λℓ − z
.

An important result is the local deformed Marchenko-Pastur law for the resolvent matrix R. This
was first proved in [BKYY16], and we refer to [DY18][Lemma 3.11] for a version that is consistent
with our setting. Specifically, the resolvent matrix R has a deterministic limit, defined by

G(z) :=

(
−(1 +mfc(z)Σ)−1 0

0 mfc(z)Ip

)
, (42)

where mfc(z) is the Stieltjes transform of the deformed Marchenko-Pasture law given by (9)
To state the local law, we will focus on the spectral domain

S := {E + iη : λR − 1 ≤ E ≤ λR + 1, 0 < η < 1} . (43)

Lemma D.2 (Local deformed Marchenko-Pastur law). For any ε > 0, the following estimate holds
With overwhelming probability uniformly for z ∈ S,

max
a,b∈I

|Rab(z)−Gab(z)| ≤ nε
(√

Immfc(z)

nη
+

1

nη

)
. (44)
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To give a precise characterization of the resolvent, we rely on the following estimates for the
Stieltjes transform mMP(z) of the Marchenko-Pasture law. We refer to e.g. [BKYY16][Lemma 3.6]
and [DY18][Lemma 3.6] for more details.

Lemma D.3 (Estimate for mfc(z)). For z = E + iη, let κ(z) := min(|E − λL|, |E − λR|) denote the
distance to the spectral edge. If z ∈ S, we have

|mfc(z)| ≍ 1, and Immfc(z) ≍


√
κ(z) + η if E ∈ [λL, λR],
η√

κ(z)+η
if E /∈ [λL, λR].

(45)

In the following analysis, we will work with z = E + iη satisfying |E − λR| ≤ n−2/3+δ and
η = n−2/3−δ, where 0 < δ < 1

3 is some parameter. Uniformly in this regime, the local law yields that
the following is true with overwhelming probability for all ε > 0 and some universal constant C0 > 0,

sup
z

max
a̸=b∈I

|Rab(z)| ≤ n−
1
3
+δ+ε, and sup

z
max
a∈I
|Raa(z)| ≤ C0. (46)

These estimates will be used repeatedly in the following subsections.

D.2 Stability of the resolvent

In this subsection, we will prove the main technical result for the proof of resampling stability in
the weakly spiked model. Specifically, we will show that under moderate resampling, the resolvent
matrices are stable. Since resolvent is closely related to various spectral statistics, this stability
lemma for resolvent will be a key ingredient for our proof.

Lemma D.4. Consider the weakly spiked model O = ∅. Assume k ≤ n5/3−ϵ0 for some ϵ0 > 0. There
exists δ0 > 0 such that for all 0 < δ < δ0, uniformly for z = E + iη with |E − λR| ≤ n−2/3+δ and
η = n−2/3−δ, there exists c > 0 such that the following is true with overwhelming probability

max
i,j

∣∣∣R[k]
ij (z)−Rij(z)

∣∣∣ ≤ 1

n1+cη
, max

α,β

∣∣∣R[k]
αβ(z)−Rαβ(z)

∣∣∣ ≤ 1

n1+cη
. (47)

Proof. Recall that Sk := {(i1, α1), . . . , (ik, αk)} is the random subset of matrix indices whose elements
are resampled in the matrix X. For 1 ≤ t ≤ k, let X[t] be the matrix obtained from X by resampling
the {(is, αs)}1≤s≤t entries and let Ft be the σ-algebra generated by the random variables X, Sk and
{X′

isαs
}1≤s≤t. For a, b ∈ I, we define

Tab := {t : {it, αt} ∩ {a, b} ≠ ∅} .

Let ε > 0 be an arbitrarily fixed parameter, and let C0 be the constant in (46). Consider the
event Et ∈ Ft where for all z = E + iη with |z − λR| ≤ n−2/3+δ and η = n−2/3−δ we have

max
a̸=b

∣∣∣R[t]
ab(z)

∣∣∣ ≤ n− 1
3
+δ+ε =: Ψ, and max

a

∣∣∣R[t]
aa(z)

∣∣∣ ≤ C0.

Define X
[t]
0 as the matrix obtained from X[t] by replacing the (it, αt) entry with 0, and also define

its symmetrization X̃
[t]
0 ∈ R|I|×|I| as in (6). Note that X̃

[t+1]
0 is Ft-measurable. We write

X̃[t] = X̃
[t+1]
0 + P̃[t+1], X̃[t+1] = X̃

[t+1]
0 + Q̃[t+1],
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where P̃[t], Q̃[t] are |I| × |I| symmetric matrices whose elements are all 0 except at the (it, αt) and
(αt, it) entries, satisfying

(P̃[t])ab =

{√
ditXitαt if {a, b} = {it, αt},

0 otherwise
(Q̃[t])ab =

{√
ditX

′
itαt

if {a, b} = {it, αt},
0 otherwise

.

Define the resolvents for the matrices X̃[t] and X̃
[t]
0 as in (40):

R[t] :=

(
−In (Σ1/2X[t])⊤

(Σ1/2X[t]) −zIp

)−1

, R
[t]
0 :=

(
−In (Σ1/2X

[t]
0 )⊤

(Σ1/2X
[t]
0 ) −zIp

)−1

.

Using first-order resolvent expansion, we obtain

R
[t+1]
0 = R[t] +R[t]P̃[t+1]R[t] +

(
R[t]P̃[t+1]

)2
R

[t+1]
0 . (48)

The triangle inequality yields∣∣∣∣(R[t+1]
0 −R[t]

)
ij

∣∣∣∣ ≤ ∣∣∣∣(R[t]P̃[t+1]R[t]
)
ij

∣∣∣∣+ ∣∣∣∣(R[t]P̃[t+1]R[t]P̃[t+1]R
[t+1]
0

)
ij

∣∣∣∣ .
Note that P̃[t+1] has only two non-zero entries,(

R[t]P̃[t+1]R[t]
)
ij
=
∑
ℓ1,ℓ2

R
[t]
iℓ1

P̃
[t+1]
ℓ1ℓ2

R
[t]
ℓ2j

=
√
dit+1Xit+1αt+1

(
R

[t]
iit+1

R
[t]
αt+1j

+R
[t]
iαt+1

R
[t]
it+1j

)
Recall that and |Xit+1αt+1 | ≤ n−1/2+ε with overwhelming probability thanks to the sub-exponential
decay (see Assumption 1). Then on the event Et, we have∣∣∣∣(R[t]P̃[t+1]R[t]

)
ij

∣∣∣∣ ≤ 2
√
dit+1C0Ψn

− 1
2
+ε.

Similarly,(
R[t]P̃[t+1]R[t]P̃[t+1]R

[t+1]
0

)
ij

=
∑

{m1,m2},{m3,m4}={it+1,αt+1}

R
[t]
im1

P̃[t+1]
m1m2

R[t]
m2m3

P̃[t+1]
m3m4

(R
[t+1]
0 )m4j .

We use the trivial bound |R[t+1]
0 | ≤ η−1 for the last term. Then, on the event Et, we have∣∣∣∣(R[t]P̃[t+1]R[t]P̃[t+1]R

[t+1]
0

)
ij

∣∣∣∣ ≤ 2dit+1n
−1+2εη−1(Ψ2 + C2

0 )≪ Ψ.

Therefore, we have shown that, on the event Et,

max
i ̸=j

∣∣∣(R[t+1]
0 )ij

∣∣∣ ≤ 2Ψ, max
i

∣∣∣(R[t+1]
0 )ii

∣∣∣ ≤ 2C0. (49)

Similarly, using the first-order resolvent expansion for R[t+1] around R[t], we have

R[t+1] = R[t] +R[t](P̃[t+1] − Q̃[t+1])R[t] +
(
R[t](P̃[t+1] − Q̃[t+1])

)2
R[t+1].
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By the same arguments as above, on the event Et, we can derive

max
i ̸=j

∣∣∣R[t+1]
ij

∣∣∣ ≤ 2Ψ, max
i

∣∣∣R[t+1]
ii

∣∣∣ ≤ 2C0.

Next, we use the resolvent identity (or zeroth-order expansion) for R[t+1] and R
[t+1]
0 :

R[t+1] = R
[t+1]
0 −R

[t+1]
0 Q̃[t+1]R[t+1].

This leads to ∣∣∣∣(R[t+1] −R
[t+1]
0

)
ij

∣∣∣∣ =
∣∣∣∣∣∣

∑
{ℓ1,ℓ2}={it+1αt+1}

(R
[t+1]
0 )iℓ1Q̃

[t+1]
ℓ1ℓ2

R
[t+1]
ℓ2j

∣∣∣∣∣∣
Thus, on the event Et, we conclude∣∣∣∣(R[t+1] −R

[t+1]
0

)
ij

∣∣∣∣ ≤ 4
√
dit+1n

− 1
2
+ε
(
Ψ2 + C0Ψ1((t+1)∈Tij)

)
=: f

[t+1]
ij (50)

Meanwhile, the second-order resolvent expansion of R[t+1] around R
[t+1]
0 yields

R[t+1] = R
[t+1]
0 −R

[t+1]
0 Q̃[t+1]R

[t+1]
0 +

(
R

[t+1]
0 Q̃[t+1]

)2
R

[t+1]
0 −

(
R

[t+1]
0 Q̃[t+1]

)3
R[t+1].

A key observation is that R
[t+1]
0 is Ft-measurable, and E[Q̃[t+1]|Ft] = 0. For simplicity of notations,

we set
q
[t]
ij :=

(
(R

[t]
0 Ẽ(it,αt))2R

[t]
0

)
ij

where Ẽ(it,αt) ∈ R|I|×|I| is the symmetrization of the matrix E(it,αt) ∈ Rp×n whose elements are all
0 except Ẽ

(it,αt)
itαt

= Ẽ
(it,αt)
αtit

= 1. Then we have∣∣∣E [R[t+1]
ij |Ft

]
− (R

[t+1]
0 )ij − p−1q

[t+1]
ij

∣∣∣ ≤ 32d
3
2
it+1

n−
3
2
+3ε
(
Ψ2C2

0 + C4
01((t+1)∈Tij)

)
=: g

[t+1]
ij . (51)

Similarly, using resolvent expansion of R[t] around R
[t+1]
0 , we obtain

R[t] = R
[t+1]
0 −R

[t+1]
0 P̃[t+1]R

[t+1]
0 + (R

[t+1]
0 P̃[t+1])2R

[t+1]
0 − (R

[t+1]
0 P̃[t+1])3R[t].

By the same arguments as above, on the event Et, we deduce that∣∣∣R[t]
ij − (R

[t+1]
0 )ij +Xit+1αt+1p

[t+1]
ij −X2

it+1αt+1
q
[t+1]
ij

∣∣∣ ≤ g
[t+1]
ij (52)

where
p
[t]
ij :=

(
R

[t]
0 Ẽ(it,αt)R

[t]
0

)
ij
. (53)

Combining (51) and (52) yields∣∣∣E [R[t+1]
ij |Ft

]
−R

[t]
ij −Xit+1αt+1p

[t+1]
ij + (X2

it+1αt+1
− p−1)q

[t+1]
ij

∣∣∣ ≤ 2g
[t+1]
ij . (54)

By a telescopic summation, we obtain

R
[k]
ij −Rij =

k−1∑
t=0

(
R

[t+1]
ij −R

[t]
ij

)
=

k−1∑
t=0

(
R

[t+1]
ij − E

[
R

[t+1]
ij |Ft

])
+

k−1∑
t=0

Xit+1αt+1p
[t+1]
ij +

k−1∑
t=0

(X2
it+1αt+1

− p−1)q
[t+1]
ij + rij (55)
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where the remainder rij is bounded by (54)

|rij | ≤ 2

k−1∑
t=0

g
[t+1]
ij .

Recall the expression of g[t]ij , to estimate the remainder, we need to control the size of the set Tij .
Note that E [|Tij |] = 2k/p. By a Berstein-type inequality (see e.g. [Cha07][Proposition 1.1]), for any
x > 0, we have

P (|Tij | ≥ E [|Tij |] + x) ≤ exp

(
− x2

4E [|Tij |] + 2x

)
Recall that k ≤ n5/3−ϵ0 . The inequality together with a union bound implies that

max
i,j
|Tij | ≤

3max(k, p(log n)2)

p
=: T

with overwhelming probability. We denote this event by T . On the event T , we have

|rij | ≲ 2kn−
3
2
+3εΨ2C2

0 + 2n−
3
2
+3εC4

0T ≲ n3ε
√
TΨ2. (56)

For the first term in (55), we set

w
[t+1]
ij :=

(
R

[t+1]
ij − E

[
R

[t+1]
ij |Ft

])
1Et .

Note that Et ∈ Ft. This implies that E[w[t+1]
ij |Ft] = 0. Moreover, by (50), on the event Et we have

|w[t+1]
ij | ≤ 2f

[t+1]
ij . Further, on the event T ,

(
k−1∑
t=0

(f
[t+1]
ij )2

)1/2

≲ n−
1
2
+εΨ2

√
k + n−

1
2
+εC0Ψ

√
T ≤ 2nεΨ2

√
T.

Using the Azuma-Hoeffding inequality, for any x ≥ 0, we have

P

(∣∣∣∣∣
k−1∑
t=0

w
[t+1]
ij

∣∣∣∣∣ ≥ 2nεΨ2
√
Tx

)
≤ 2 exp

(
−x

2

2

)
.

Moreover,

P

(∣∣∣∣∣
k−1∑
t=0

(
R

[t+1]
ij − E

[
R

[t+1]
ij |Ft

])∣∣∣∣∣ ≥ 2nεΨ2
√
Tx

)
≤ P

(∣∣∣∣∣
k−1∑
t=0

w
[t+1]
ij

∣∣∣∣∣ ≥ 2nεΨ2
√
Tx

)
+

k−1∑
t=0

P(Ect ).

Recall that Et holds with overwhelming probability, and consequently
∑k−1

t=0 P(Ect ) ≤ n−D for any
D > 0. Choosing x = nε implies that with overwhelming probability∣∣∣∣∣

k−1∑
t=0

(
R

[t+1]
ij − E

[
R

[t+1]
ij |Ft

])∣∣∣∣∣ ≤ 2n2εΨ2
√
T. (57)

For the next two terms in (55), we will deal with them by introducing a backward filtration.
Let F ′

t be the σ-algebra generated by the random variables X′, Sk and {Xiα} with i /∈ {i1, . . . , it}
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and α /∈ {α1, . . . , αt}. Similarly as above, we consider the event E ′t that for all z = E + iη with
|z − λR| ≤ n−2/3+δ and η = n−2/3−δ we have

max
a̸=b

∣∣∣R[t]
ab(z)

∣∣∣ ≤ Ψ, and max
a

∣∣∣R[t]
aa(z)

∣∣∣ ≤ C0.

Using resolvent expansion, the same arguments for (49) yield that, on the event E ′t, we have

max
i ̸=j

∣∣∣(R[t]
0 )ij

∣∣∣ ≤ 2Ψ, max
i

∣∣∣(R[t]
0 )ii

∣∣∣ ≤ 2C0.

A key observation is that p
[t]
ij defined in (53) is F ′

t-measurable. Also, we have E[Xitαt |F ′
t] = 0.

Consider
p̃
[t]
ij := Xitαtp

[t]
ij1E ′

t
.

Then we have E[p̃[t]ij |F ′
t] = 0 since we also have E ′t ∈ F ′

t. Note that

P

(∣∣∣∣∣
k−1∑
t=0

Xit+1αt+1p
[t+1]
ij

∣∣∣∣∣ ≥ x
)
≤ P

(∣∣∣∣∣
k−1∑
t=0

p̃
[t+1]
ij

∣∣∣∣∣ ≥ x
)

+

k−1∑
t=0

P((E ′t+1)
c),

The second term is negligible since E ′t holds with overwhelming probability. To estimate the first
term, we use Azuma-Hoeffding inequality as before. Based on similar arguments as in (50), we
deduce ∣∣∣p̃[t]ij ∣∣∣ ≤ 4

√
ditn

− 1
2
+ε
(
Ψ2 + C0Ψ1(t∈Tαβ)

)
.

By considering the event T and using Azuma-Hoeffding inequality as in (57), we can conclude that
with overwhelming probability, ∣∣∣∣∣

k−1∑
t=0

p̃
[t+1]
ij

∣∣∣∣∣ ≤ n2εΨ2
√
T

As a consequence, with overwhelming probability∣∣∣∣∣
k−1∑
t=0

Xit+1αt+1p
[t+1]
ij

∣∣∣∣∣ ≲ n2εΨ2
√
T. (58)

For the third term in (55), by the same arguments, we have∣∣∣∣∣
k−1∑
t=0

(X2
it+1αt+1

− p−1)q
[t+1]
ij

∣∣∣∣∣ ≲ n2εΨ2
√
T. (59)

Finally, combining (55), (56), (57), (58) and (59), we have shown that∣∣∣R[k]
ij (z)−Rij(z)

∣∣∣ ≲ n3εΨ2
√
T.

Recall that η = n−2/3−δ, Ψ = O(n−
1
3
+δ+ε), and T = O(n

2
3
−ϵ0). Then we obtain

nη
∣∣∣R[k]

ij (z)−Rij(z)
∣∣∣ ≤ n− ϵ0

2
+δ+5ε. (60)

Choosing δ + 5ε < ϵ0
2 yields the desired bound (47) for a fixed z.
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So far, we have proved the desired result for a fixed z. To extend this result to a uniform estimate,
we simply invoke a standard net argument. To do this, we divide the interval [−n−2/3+δ, n−2/3+δ]
into n2 sub-intervals, and consider z = E+iη with κ(z) taking values in each sub-interval. Note that

|Rij(z1)−Rij(z2)| ≤
|z1 − z2|

min(Im (z1), Im (z2))2
.

For z1, z2 associated with the same sub-interval, we have

nη|Rij(z1)−Rij(z2)| ≤ nη
n−2/3+δn−2

η2
≤ n−1+2δ,

which is of lower order compared with the error bound in (60). This shows that, up to a small multi-
plicative factor, the desired error bound (47) holds uniformly in each sub-interval with overwhelming
probability. Finally, thanks to the overwhelming probability, a union bound over the n2 sub-intervals
yields the desired uniform estimate (47) for all z = E+ iη with |E−λR| ≤ n−2/3+δ and η = n−2/3−δ.

Using the same arguments, we can prove a similar bound for the R
[k]
αβ and Rαβ blocks. Hence,

we have shown the desired results.

D.3 Stability of the top eigenvalue

As a consequence of the stability of the resolvent, we also have the stability of the top eigenvalue.
This stability of the eigenvalue will play a crucial rule for the resolvent approximation of eigenvector
statistics in the next subsection.

Lemma D.5. Consider the weakly spiked model O = ∅. Assume k ≤ n5/3−ϵ0 for some ϵ0 > 0. Let
0 < δ < δ0 with δ0 as in Lemma D.4. For any ε > 0, with overwhelming probability, we have∣∣∣λ− λ[k]∣∣∣ ≤ n− 2

3
−δ+ε.

Proof. Without loss of generality, we assume that λ > λ[k]. Set η = n−2/3−δ. By the spectral
representation of the resolvent (41), we have

ImRii(z) = η

p∑
ℓ=1

|vℓ(i)|2

(λℓ − E)2 + η2
≥ η|v(i)|2

(λ− E)2 + η2
≥ η|v(i)|2

2 (max(|λ− E|, η))2
.

By the pigeonhole principle, we know that there exists 1 ≤ i ≤ p such that |v(i)| ≥ p−1/2. Choosing
this i and z = λ+ iη, we obtain

pη−1ImRii(λ+ iη) ≥ 1

2η2
. (61)

On the other hand, using the spectral representation of resolvent again for R[k], we have

pη−1ImR
[k]
jj (z) =

p∑
m=1

p|v[k]
m (j)|2(

λ
[k]
m − λ

)2
+ η2

.

Pick ω > 0, we decompose the summation into two parts

J1 =

nω∑
m=1

p|v[k]
m (j)|2(

λ
[k]
m − λ

)2
+ η2

, J2 =

p∑
m=nω+1

p|v[k]
m (j)|2(

λ
[k]
m − λ

)2
+ η2

.
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Using delocalization of eigenvectors, for any ε > 0, with overwhelming probability, we have

J1 ≲
nω+ε

(min1≤m≤p |λ[k]m − λ|)2
. (62)

By the Tracy-Widom limit of the top eigenvalue (Lemma B.2), for any ε > 0, with overwhelming
probability, we have |λ− λR| ≤ n−2/3+ε. Also, as discussed in (19), the rigidity of eigenvalues yields
that for all m ≥ nω, with overwhelming probability,

λ− λ[k]m ≳ m2/3p−2/3.

Then using delocalization again, with overwhelming probability, we have

J2 ≤
p∑

m=nω+1

nε

(λ
[k]
m − λ)2

≲ nε(nω)−1/3n4/3. (63)

Again, since |λ[k] − λ| ≤ 2n−2/3+ε, by choosing ω = 2ε we have J2 ≤ J1. Therefore, by (62) and
(63), we have shown that with overwhelming probability

pη−1ImR
[k]
jj (λ+ iη) ≲ n3ε

(
min

1≤m≤p
|λ[k]m − λ|

)−2

.

Note that the minimum is attained by λ[k]. This shows that

nη−1ImR
[k]
ii (λ+ iη) ≲ n3ε|λ[k] − λ|−2.

Using Lemma D.4 and (61), we have

nη−1ImR
[k]
ii (λ+iη) ≥ nη−1

(
ImRii(λ+ iη)−

∣∣∣ImR
[k]
ii (λ+ iη)− ImRii(λ+ iη)

∣∣∣) ≥ 1

2η2
− 1

ncη2
≳

1

η2
.

Therefore, we have shown that, with overwhelming probability,

1

η2
≲ n3ε

1

|λ− λ[k]|2
.

Recall η = n−2/3−δ, and we conclude that∣∣∣λ− λ[k]∣∣∣ ≤ n−2/3−δ+3ε,

which proves the desired result thanks to the arbitrariness of ε > 0.

D.4 Proof of Theorem 1.2

The final ingredient to prove the resampling stability is the following approximation lemma, which
asserts that the product of entries in the eigenvector can be well approximated by the resolvent
entries.

Lemma D.6. Consider the weakly spiked model O = ∅. Assume that k ≪ n5/3−ϵ0 for some ϵ0 > 0.
Let 0 < δ < δ0 be as in Lemma D.4. Then, for z0 = λ + iη with η = n−2/3−δ, there exists c′ > 0
such that with probability 1− o(1) we have

max
i,j
|ηImRij(z0)− v(i)v(j)| ≤ n−1−c′ , and max

i,j

∣∣∣ηImR
[k]
ij (z0)− v[k](i)v[k](j)

∣∣∣ ≤ n−1−c′ .
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Similarly, we also have

max
α,β

∣∣∣∣ηIm Rαβ(z0)

z0
− u(α)u(β)

∣∣∣∣ ≤ n−1−c′ , and max
α,β

∣∣∣∣∣∣ηIm R
[k]
αβ(z0)

z0
− u[k](α)u[k](β)

∣∣∣∣∣∣ ≤ n−1−c′ .

Proof. For any ε > 0, we consider a general z = E + iη with |E − λR| ≤ n−2/3+ε. From the spectral
representation of the resolvent (41), we have

ImRij(z) = η

p∑
ℓ=1

vℓ(i)vℓ(j)

(λℓ − E)2 + η2
.

Pick some ω > 0, we decompose the summation on the right-hand side into three parts
p∑

ℓ=1

vℓ(i)vℓ(j)

(λℓ − E)2 + η2
=

v(i)v(j)

(λ− E)2 + η2
+ J1 + J2,

where

J1 =
nω∑
ℓ=2

vℓ(i)vℓ(j)

(λℓ − E)2 + η2
, J2 =

p∑
ℓ=nω+1

vℓ(i)vℓ(j)

(λℓ − E)2 + η2
.

Using the same arguments as in (63), for any ε > 0, with overwhelming probability we have

|J2| ≲ nε(nω)−1/3n1/3.

For the term J1, we consider the following event

E :=
{
λ1 − λ2 ≥ c0n−2/3

}
∩
{
max
1≤ℓ≤p

∥vℓ∥∞ ≤ n−1/2+ε

}
∩
{
|J2| ≲ nε(nω)−1/3n4/3

}
.

For any ε > 0, we can find an appropriate c0 > 0 such that P(E) > 1− ε/2. Then, for z = E + iη
with |λ− E| ≤ c0

2 n
−2/3, on the event E , we have

|J1| ≲ nεnωn1/3.

Let δ′ > 0 with δ′+ δ < δ0. On the event E , for all z = E+iη with |λ−E| ≤ ηn−δ′ and η = n−2/3−δ,
we have ∣∣∣∣v(i)v(j)− η2v(i)v(j)

(λ− E)2 + η2

∣∣∣∣ ≤ n−1+2ε

∣∣∣∣1− η2

(λ− E)2 + η2

∣∣∣∣ ≤ n−1+2ε−2δ′ .

This yields

|ηImRij(z)− v(i)v(j)| ≤
∣∣∣∣v(i)v(j)− η2v(i)v(j)

(λ− E)2 + η2

∣∣∣∣+ η2(|J1|+ |J2|)

≤ n−1+2ε−2δ′ + n−1+ε+ω−2δ + n−1+ε−ω
3
−2δ.

Choosing ω = ε < min(δ, δ′)/2, we obtain

max
i,j
|ηImRij(z)− v(i)v(j)| ≤ n−1−min(δ,δ′). (64)

Similarly, we can apply the same arguments to R[k]. Consider the event

E ′ :=
{
max
i,j

∣∣∣ηImR
[k]
ij (z)− v[k](i)v[k](j)

∣∣∣ ≤ n−1−min(δ,δ′) for all |λ[k] − E| ≤ ηn−δ′ , η = n−2/3−δ

}
.
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By previous arguments, we know P(E ′) > 1− ε/2. This gives us P(E ∩ E ′) > 1− ε. Finally, note that
δ + δ′ < δ0, by Lemma D.5, with overwhelming probability we have |λ− λ[k]| ≤ n−2/3−δ−δ′ = ηn−δ′ .
This implies that we can choose z = λ+ iη in both (64) and E ′. Thus, we have shown the desired
result for v and v[k] by choosing 0 < c′ < min(δ, δ′).

On the other hand, from (41) we also have

Im
Rαβ(z)

z
= η

n∑
ℓ=1

uℓ(α)uℓ(β)

(λℓ − E)2 + η2
.

Using the same methods as above yields the desired result for u and u[k].

Now we prove the main result Theorem 1.2 on the stability of PCA under moderate resampling
for the weakly spiked model.

Proof of Theorem 1.2. Let z0 = λ+ iη as in Lemma D.6. By Lemma D.4 and D.6, we know that,
with probability 1− o(1), for all α, β ∈ I2, we have∣∣∣v(i)v(j)− v[k](i)v[k](j)

∣∣∣
≤ |v(i)v(j)− ηImRij(z0)|+

∣∣∣ηImRij(z0)− ηImR
[k]
ij (z0)

∣∣∣+ ∣∣∣ηImR
[k]
ij (z0)− v[k](i)v[k](j)

∣∣∣
≤ n−1−c + n−1−c′ + n−1−c.

Denote c′′ := min(c, c′), and we have

max
i,j

∣∣∣v(i)v(j)− v[k](i)v[k](j)
∣∣∣ ≲ n−1−c′′ .

For any fixed ε > 0, we consider the event

E :=

{
max
i,j

∣∣∣v(i)v(j)− v[k](i)v[k](j)
∣∣∣ ≲ n−1−c′′

}
∩
{
∥v[k]∥∞ ≤ n−1/2+ε

}
.

Since delocalization of eigenvectors holds with overwhelming probability, we know that P(E) = 1−o(1).
By the pigeonhole principle, there exists 1 ≤ i ≤ p such that |v(i)| > p−1/2. We choose the ±

phases of v and v[k] in the way that v(i) and v[k](i) are non-negative. On the event E , we obtain∣∣∣v(i)− v[k](i)
∣∣∣ = ∣∣(v(i))2 − (v[k](i))2

∣∣
v(i) + v[k](i)

≲ n−1/2−c′′ .

Moreover, for any entry v(j) and v[k](j), if E holds, the triangle inequality gives us∣∣∣v(j)− v[k](j)
∣∣∣ = ∣∣v(i)v(j)− v(i)v[k](j)

∣∣
v(i)

≤
∣∣v(i)v(j)− v[k](i)v[k](j)

∣∣
v(i)

+
|v[k](j)|
v(i)

|v(i)− v[k](i)|

≲ n−1/2−c′′ + n−1/2−c′′+ε.

Choosing ε sufficiently small, this implies the desired result.

32



For u and u[k], note that∣∣∣u(α)u(β)− u[k](α)u[k](β)
∣∣∣

≤
∣∣∣∣u(α)u(β)− ηIm Rαβ(z0)

z0

∣∣∣∣+
∣∣∣∣∣∣ηIm Rαβ(z0)

z0
− ηIm

R
[k]
αβ(z0)

z0

∣∣∣∣∣∣+
∣∣∣∣∣∣ηIm R

[k]
αβ(z0)

z0
− u[k](α)u[k](β)

∣∣∣∣∣∣
By Lemma D.4, we have∣∣∣∣∣∣Im Rαβ(z0)

z0
− Im

R
[k]
αβ(z0)

z0

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣Rαβ(z0)−R

[k]
αβ(z0)

z0

∣∣∣∣∣∣ ≲
∣∣∣Rαβ(z0)−R

[k]
αβ(z0)

∣∣∣ ≤ 1

n1+cη
.

As a consequence, we have ∣∣∣u(α)u(β)− u[k](α)u[k](β)
∣∣∣ ≲ n−1−c′′ .

The desired result for u and u[k] then follows from the same arguments above for v and v[k].

E Proof for the Strongly Spiked Model

As discussed in Section B, one of the key differences between the weakly spiked model and the
strongly spiked model is the distribution of eigenvectors. We see from the previous sections that the
proof for the weakly spiked model crucially depends on the delocalization property. In contrast, this
is not valid in the strongly spiked case and consequently results in a distinct phenomenon.

In the strongly spiked model, the celebrated BBP phase transition [BBAP05] shows that the
leading sample eigenvectors in the outlier of the spectrum have non-trivial correlation with the
corresponding population eigenvectors. Recall that the population covariance matrix is in the form
Σ =

∑p
i=1 dieie

⊤
i , and indices i with di > 1 +

√
ξ correspond to the outlier (denoted as O). For

i ∈ O, it was first derived in [Lu02] and later generalized in [JL09, BGN11] that

|⟨vi, ei⟩|2 =
1− ξ

(di−1)2

1 + ξ
di−1

+ o(1), a.s. (65)

Since X and X[k] have the same marginal distribution, the same also holds for v
[k]
i . Note that the

eigenvector overlap |⟨v,v[k]⟩| is independent of the sign the of principal components. Therefore,
without loss of generality, we may assume that

⟨vi, ei⟩ = ⟨v[k]
i , ei⟩ =

√√√√1− ξ
(di−1)2

1 + ξ
di−1

+ o(1)

Since both principal components v and v[k] lie on the unit sphere, we obtain

∥vi − ei∥2 = 2− 2⟨vi, ei⟩ = 2− 2

√√√√1− ξ
(di−1)2

1 + ξ
di−1

+ o(1)
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and same also holds for v
[k]
i . By triangle inequality,

∥v − v[k]∥ ≤ ∥vi − ei∥+ ∥v[k]
i − ei∥ ≤ 2

√√√√√2− 2

√√√√1− ξ
(di−1)2

1 + ξ
di−1

+ o(1)

Hence,

|⟨vi,v
[k]
i ⟩| =

2− ∥vi − v
[k]
i ∥2

2
≥ 1− 4

1−

√√√√1− ξ
(di−1)2

1 + ξ
di−1

+ o(1)

which completes the proof.

F More Discussions on Database Alignment

Recall that in the database alignment problem, we have two matrices X ∈ Rp×n, Y = ΠfX
[k]Π⊤

s

where Πs and Πf are permutation matrices of order n and p chosen uniformly at random. The goal
is to recover the permutations Πs and Πf based on the observations X and Y. To separate the
sample permutation Πs and the feature permutation Πf , we consider

A = XX⊤, B = YY⊤ = Πf

(
X[k](X[k])⊤

)
Π⊤

f ,

and
Â = X⊤X, B̂ = Y⊤Y = Πs

(
(X[k])⊤X[k]

)
Π⊤

s .

In database alignment or graph matching, spectral methods have been studied and applied in
many scenarios (see e.g. [FMWX20, FMWX22] and [GLM22]), and one of the most common spectral
algorithm is to focus on the top eigenvectors. In this manner, a natural idea to reconstruct the
permutations Πs (and Πf) in our setup is to align the top eigenvectors of the matrices A and B (and
Â and B̂). See Algorithm 1 for details, and note that apparently this algorithm is computationally
efficient. We are interested in under what resampling strength, the PCA-Recovery algorithm can
almost perfectly reconstruct the permutations, and under what condition this method completely
fail.

A similar PCA method was studied in [GLM22] to match two symmetric Gaussian matrices
correlated via additive Gaussian noise. Their work proved a all-or-nothing phenomenon in the
alignment problem (i.e. the accuracy of the recovery undergoes a sharp transition from 0 to 1 near
some critical threshold), and a key step of their proof is a 0-1 transition for the inner product of the
top eigenvectors. Since our weakly spiked model has the same phase transition for the eigenvector
overlap, it is natural to ask if our alignment problem for the weakly spiked model also exhibits the
all-or-nothing phenomenon. However, the arguments in [GLM22] are not applicable in our case.
Their proof heavily depends on the Gaussian assumption of the matrices, and the additive strucutre
of the noise. In particular, they proof crucially relies on the orthogonal invariance of the Gaussian
noise. While in our case, the noise is presented in terms of the resampling strength. There is no
way to write the “noise" in an additive form that is independent of the “signal". Even in the case of
Gaussian null model, a rigorous analysis of the PCA-Recovery algorithm seems difficult.

Nevertheless, our results on the sensitivity of the eigenvector inner products suggest that, in
the weakly spiked model, when k ≫ n5/3, the two eigenvectors are approximately de-correlated so
that they share almost no common information. Consequently, recovery of the data via aligning the
principal components would be basically random guessing. Therefore, in the weakly spiked case,
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Algorithm 1 PCA-Recovery

Input: data matrices X,Y ∈ Rn×p

Output: permutation matrices Π̂s ∈ Rn×n, Π̂f ∈ Rp×p

Compute u the unit leading left singular vectors of X
Compute v the unit leading right singular vectors of X
Compute u′ the unit leading left singular vectors of Y
Compute v′ the unit leading right singular vectors of Y

Compute Π+
s the permutation aligning u and u′

Compute Π−
s the permutation aligning u and −u′

Compute Π+
f the permutation aligning v and v′

Compute Π−
f the permutation aligning v and −v′

if ⟨A,Π+
s B(Π+

s )
⊤⟩ ≥ ⟨A,Π−

s B(Π−
s )

⊤⟩ then
Π̂s ← Π+

s

else
Π̂s ← Π−

s

end if

if ⟨Â,Π+
f B̂(Π+

f )
⊤⟩ ≥ ⟨Â,Π−

f B̂(Π−
f )

⊤⟩ then
Π̂f ← Π+

f

else
Π̂f ← Π−

f

end if

we conjecture that if k ≫ n5/3, PCA-Recovery fails to recover the latent permutations in the sense
that it can only achieve o(1) fraction of correct matching with the ground truth. On the other hand,
when k ≪ n5/3, the performance of our algorithm seems mysterious.

As shown in Figure 3, we empirically check the performance of the PCA-Recovery algorithm for
the null model and the weakly spiked model. Similarly as in setup in the Main Part, we consider
a data matrix of size 250 × 1000 whose entries are Gaussian or two-point, and the population
covariance matrix is either identity or contains weak spikes of rank r = 10 with strength {di}10i=1

uniformly sampled from (1, 32). Numerical simulations suggest that when k ≫ n5/3, the performance
of PCA-Recovery is indeed poor in the sense that the accuracy of the recovery is almost 0. On
the other hand, when k ≪ n5/3, experiments show that we cannot expect the sharp all-or-nothing
phenomenon similarly as in [GLM22].

Finally, we remark that what PCA-Recovery actually studies is a more difficult task, as we do
not need direct observations of X and Y. We can consider a harder problem (in both statistical
and computational sense), which we call alignment from covariance profile. In this problem, we
only have access to the covariance between the samples and we aim to recover the correspondence
between the samples from the two databases. A similar problem with Gaussian data and additive
noise was considered in [WWXY22] as a prototype for matching random geometric dot-product
graphs. The analysis of such database alignment problem with adversarial corruption will be an
interesting direction for future studies.
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(a) Null model (b) Weakly spiked model

Figure 3: Recovery accuracy for 250 × 1000 matrices with Gaussian and two-point data. The
horizontal axis is the corruption (resampling) strength, given by logn(4k). Each experiment is
averaged over 50 repetitions.
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